User:Jskopek

From OpenCommons
Revision as of 16:35, August 11, 2022 by Pinfold (talk | contribs) (Created page with "{{Member |fullname=Jiri Skopek |membership=Member }}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


To edit your profile click here and then select 'Edit with form' from the tabs at the top of the page.

JiriSkopek.jpeg User Name Jskopek
Name Jiri Skopek
Company Jiri Skopek Architects
Company Position Architect & Smart City Planner
City, State Toronto
Country Canada
Sectors Buildings, Smart Region, Transportation, Utility, Wellbeing, Resilience, Energy, Waste, Water, Smart Buildings
Membership Level Member
Activities


Buckman Resilience600.jpg CIVIC school HUBS
NSF CIVIC grant to incubate the Federal School Infrastructure Toolkit for more resilience Community services. A pilot program with be developed with the BENSON school district in Portland, and woven into the urban/rural network of the Metro regional emergency response.
Morgenstadt Framework.jpg Framework for Enhancing Disaster Mitigation and Regeneration of Community Capacity
Establishment of a framework that fosters collaborative efforts between diverse public, private, and academic partners to enhance disaster mitigation, community resilience and economic growth.
Buchman School.jpg School Organized Locally Assisted Community Emergency‐Management
The School Organized Locally Assisted Community Emergency‐Management (SOLACE) project focused on the use of a community school as a community resilience hub for its surrounding community. Community Resilience Hubs (CRHs) can be defined as community‐serving facilities augmented to support residents and coordinate resource distribution of resources and services to the surrounding community. This project focused specifically on the use of a CRM to support community member needs before, during, or after a natural hazard event and on developing a community‐led sociotechnical infrastructure framework for adapting a public school (Buckman Elementary School) as the pilot CRH. In 2022, this project received a NSF Planning Grant.

GreenUrban.jpg Supporting Community Cooperation in Urban Design
Engagement, Visioning, Master Planning, and Making Agreements are found in a process that communities use to make meaningful change in their neighborhood. Community stories are precedents demonstrating the value of integrating nature with development to sustain active and vital community-oriented neighborhoods.

Extreme heat.jpg City Resilience
The previous chapter focused on technology development to support whole community planning for disaster recovery, with emphasis on the requirements for multi-agency planning and decision -making involving an entire community and its physical, economic, and social resources. Technology development strategies to enhance City (or Community) Resilience are closely aligned with capabilities for disaster recovery, insofar as they involve the entire scope of community functions.
Floods.jpg Floods
The intensity of extreme rainfall has “sharply” increased over the past 20 years. While floods can be more regional in nature, satellite data show hydroclimatic extreme events are increasing in frequency, duration, and extent under warming conditions. Warmer temperatures increase evaporation, putting more moisture into the atmosphere that then gets released as rain or snowfall. It is also expected that, as the climate warms, flash floods will get “flashier,” meaning that the timing of the floods will get shorter while the magnitude gets higher.
Grid connected Buildings.jpeg Grid-Interactive, Efficient and Connected Buildings (GEBs)
This section explores why the buildings need to be efficient, responsive, and able to interact with the electrical grid in a way that benefits both the building owner and the grid as a whole and what KPIs can be used to measure the effectiveness of the grid-connected buildings.
Underground Buildings with City Services.jpg Interfacing Smart Buildings with City Services and Infrastructure
This section discusses some of the opportunities relative to an interface of the buildings and city services and infrastructure where utility companies, local governments, and property owners can partner to improve the built environment, and operational efficiency, save money, and conserve resources.

The first part outlines the benefits of good Buildings and City infrastructure interface and describes the connections of Smart Buildings to City Services and Infrastructure. The second section will outline recommended KPIs of the good interface of building with urban services. The third section identifies various elements of Building-connected City Services and Infrastructure and the final section provides a Case Study.

.
MobilityChapter.jpg Mobility
Mobility has been a constantly evolving critical feature of human civilization. Major changes and advances in mobility have been linked to the advent of new power sources (animals, wind, steam, fossil fuels, super dense batteries, etc.).
OperationsChapter.jpg Next Generation Building Operations
This section explores how the next generation of smart building operations, functionality and maintenance is utilizing the (IoT) internet of things to operate at full interconnectivity, functionality and efficiency. Smart building , operations, functionality and maintenance capabilities cut energy consumption and CO2 emissions, reduce maintenance costs and extend equipment lifetime. Various systems offer actionable insights, drive fewer complaints from occupants, decrease the need for unscheduled maintenance and reduce energy costs and carbon footprint. In the time of pandemic or other extreme events, smart buildings may offer autonomous operation.
ProductivityChapter.jpg Organizational and Individual Productivity and Wellness of Smart Buildings
This section explores the application of smart technologies in buildings to increase the ORGANIZATIONAL PRODUCTIVITY and WELLNESS of the various private/public sector stakeholders: the owners & investor organizations, property and facility management organizations, government and corporate tenants (i.e. organizations who occupy or rent space) and individual occupants.
DesertSun.jpg Public Safety-Resilience and Regeneration of Communities
Extreme heat and heatwaves are becoming a significant concern for many world cities and communities, and it's rapidly worsening due to the impact of climate change. Extreme heat events have severe impacts on ecosystems, infrastructure, human health, and economies. These heatwaves are not only a consequence of escalating global temperatures, but they also symbolize an acute emergency for urban environments worldwide In several locations the extreme heat is exacerbated by poor air quality caused by smoke from wildfires.
ResilientHubChapter.jpg Resilience Hubs
This chapter demonstrates how integrated smart systems that draw on a number of technologies, processes, and data can enable a community structures to function more efficiently for their main purpose as well as be prepared to serve as a “community resiliency hub” and/or “emergency shelter” as needed. Selecting a school as a community resilience hub leverages its existing function for families already charged with protecting children, employing vetted professionals, and communicating with parents, public safety agencies, and city government as well as embuing the school with some additional important functions and responsibilities to an extended community population. (The pilot for this project--using the Buckman School in Portland, Oregon--received a National Science Foundation Planning Grant in 2022.)
MobilityChapter.jpg Smart Building-related Mobility
Buildings have a very symbiotic relationship with transportation. People have to get to the buildings on foot, by bicycle or other mobility devices, public transport or car (in exceptional cases by helicopter and in future by drone). Cars have created a demand for parking space in the building. Then there are deliveries and waste collection typically by trucks.
Smart Buildings and IoT.jpg Smart Buildings O&M
This section explores how the next generation of smart building operations, functionality and maintenance is utilizing the Internet of Things (IoT) to operate at full interconnectivity, functionality and efficiency.