Smart Water: Difference between revisions

From OpenCommons
Jump to navigation Jump to search
(Created page with "{{Chapter |image=Water-meter.jpg |poc=Wilfred Pinfold |authors=Wilfred Pinfold |blueprint=Utility |sectors=Utility |summary=A smart water system is a type of water management...")
 
No edit summary
 
(One intermediate revision by the same user not shown)
Line 2: Line 2:
|image=Water-meter.jpg
|image=Water-meter.jpg
|poc=Wilfred Pinfold
|poc=Wilfred Pinfold
|authors=Wilfred Pinfold
|authors=Ed Davalos, Kenneth Thompson, Scott Pomeroy, Derick Lee, Deborah Acosta, Wilfred Pinfold
|blueprint=Utility
|blueprint=Utility
|sectors=Utility
|sectors=Utility
Line 22: Line 22:
*'''Better data''': Smart water systems can provide data on water usage, water quality, and water distribution, which can help to inform better water management policies and strategies.
*'''Better data''': Smart water systems can provide data on water usage, water quality, and water distribution, which can help to inform better water management policies and strategies.
*'''Increased reliability''': Smart water systems can help to increase the reliability of water supply by reducing leaks, providing real-time monitoring, and early detection of issues in the water distribution network.
*'''Increased reliability''': Smart water systems can help to increase the reliability of water supply by reducing leaks, providing real-time monitoring, and early detection of issues in the water distribution network.
=Water System=
Our planet’s water supply is finite. There is as much water on earth today as there was yesterday, and as much as there ever will be. However, the human population continues to grow, and along with it the need for more fresh water. Further stressed by aging infrastructures, government mandates, and shrinking budgets, managing our planet’s supply of fresh water continuous to be critical to ongoing economic prosperity and social wellbeing.
Non-revenue water (NRW) is defined as treated drinking water that is lost in the distribution system before it can be delivered to customers. Worldwide, more than 32 billion cubic meters of treated water leak from urban water supply systems annually, equivalent to over $18 billion of NRW (source: Itron). Some of these losses, such as leaks are easy to find, but many go undetected, resulting in precious treated water going to
waste, lost revenues, and higher production costs. Additional losses associated with theft and poor
metering result in lost revenue to the utility. Water losses on the customer side do not affect utility
revenue, but they do have a negative impact on sustainable management of precious water resources.
An increasing number of water providers are realizing that deploying new technologies such as acoustic
leak-sensing across their distribution systems makes both economic and environmental sense. For
example, a pipeline leak as small 1/8 inch can lose more than 3,500 gallons per day (gpd) until it is
detected and repaired.
Ultimately, the biggest water challenge facing our planet today is the assurance that its most valuable
resource can be sustained beyond tomorrow. Just because water resources in a particular area are not
in jeopardy today, does not mean they will not be tomorrow. Increasing populations will continue to
migrate to, and expect more from, water-rich areas. While Smart City initiatives are finding more
efficient ways to sustain the drinking water resource, the demand is ever growing and fresh water
supplies will only continue to be strained. The challenge is to ensure they do not become exhausted.
=Solutions and Benefits=
To meet continually increasing customer expectations, utilities must become more efficient in the way
they manage their water resources, handle the demands of their service territory, and engage with their
customers. The answer is not to decrease or limit access to fresh water, but rather to increase the
efficiency with which water is provided and consumed – decreasing the excess not the access. In other
words, to be “resourceful.” We need to understand how and when water is being consumed and/or lost
so that decisions can be made today that will positively impact the sustainability of our water resources
tomorrow.
This is done through data. But not just data and not just big data. It is through the effective collection of
accurate, reliable data and the use of tools to analyze this data. The solutions to managing a
community’s water resources include understanding the demands of a utility’s service territory;
ensuring sufficient supply is available by more efficiently identifying contributors to NRW (such as
system leaks, aging assets, and unauthorized usage); reducing operational expenses and uncovering new
revenue streams; and providing customers with access to that same set of information so that they can
understand and manage their consumption.
According to the U.S. Environmental Protection Agency (EPA), Water Efficiency is “the use of improved
technologies and practices to deliver equal or better service with less water.” The key is access to
products and solutions that deliver on that need, and equipping utilities to be able to minimize
spending, increase operational efficiencies, and uncover new revenue streams.
Advanced Metering Infrastructure (AMI) and multi-purpose networks, in addition to optimizing the
billing process, transform data collected through the system into valuable and actionable intelligence for
users across the utility, delivering benefits to the entire organization from billing and customer service
to operations, engineering, and distribution, empowering them all to address conservation and resource
sustainable opportunities. Delivering the information necessary to make decisions enables a utility to
effect change that will have both an immediate and lasting impact on the availability, management, and
use of water.
A number of utilities and organizations are already demonstrating their commitment to water efficiency
through the use of advanced technologies, implementing solutions that facilitate program objectives.
For example, Envision Charlotte in Charlotte, NC has programs in place to encourage the reduction of
energy and water consumption in the downtown area of the city (known as Uptown). By bringing
awareness to consumption levels through the deployment of advanced technologies capable of
collecting hourly interval data, Envision Charlotte is encouraging change in the way energy and water
are used and, as a result, showing that businesses can lower the expense of “keeping the lights on.” A
key benefit to this program is having more businesses come to the Charlotte area, and therefore more
people. This is just one “end” justified by the “means” that demonstrates the power and flexibility of
technology capable of satisfying utility challenges around the world.
The City of Madison, WI, thanks to the collection of interval data, was able to establish thresholds for
identifying possible customer-side leaks, and then proactively notifying the customer. As a result of the
City’s efforts, the threshold for what alerts a possible leak has continually been lowered, or rather fine-
tuned, over the past 3 years.
Another example of actuating change within a utility’s operations and customer base is the City of
Cleveland, OH. Following the implementation of an AMI, the City has also been able to proactively
identify potential customer-side leaks and, in turn, proactively notify their customers. The resulting
benefits have been recognized by both the utility and the end customer. Following notification from the
utility, Cleveland Water’s customers have the opportunity to minimize the impact to their water bill, and
Cleveland Water has seen a significant decrease in the number of bill-related calls to their call center.
Furthermore, interval consumption data, coupled with the metered data from district meters, enables
utilities to identify potential system losses through District Metering. System losses could be a result of
leaks, aging meters, incorrectly sized meters, and/or unauthorized consumption. Having the ability to
identify these potential losses prior to rolling a truck results is an immediate, positive impact to the
bottom line.
Utilities that are challenged with drought conditions can monitor customer consumption to report on,
and enforce, compliance during periods of water restrictions. Knowing when customers are using water,
again without having to roll a truck, further decreases operational costs and increases the opportunities
to save a valuable resource.
In addition to identifying system losses via the collection of time-synchronized data, with the installation
of acoustical leak sensors, a utility can continuously audit the integrity of their distribution system.
Knowing when leaks occur, before they damage public or private property, further decreases
operational expenses and increases revenue opportunities. With proactive leak detection, utilities are
able to reduce the amount of water lost, reduce the cost of repair, and as a result, reduce their NRW
percentage.

Latest revision as of 05:18, January 24, 2023


Utility
Utility
Sectors Utility
Contact Wilfred Pinfold
Topics
Activities
Automated Meter Reading.jpg Leveraging Existing Automated Meter Reading for a Smart Alert Response Technology
The City of Houston is 10,062 square miles (26,060 km²), with 6,950 miles (11,184 km) of sewer pipeline ranging in size from 6 to 144 inches (15 to 365cm) in diameter and including approximately 123,000 manholes. Houston uses the Automated Meter Reading (AMR)/Advanced Meter Infrastructure (AMI) network for identification and mitigation of Sanitary Sewer Overflows as part of the City's system-wide operation, maintenance and management plan. Houston calls this plan AIM (Automated Infrastructure Monitoring).
Researchproject2.jpg Non-Revenue Water Monitoring and Reduction Using Advanced LTE Communications Gwinnet County GA
Install the first LTE communications base instrumentation in a pilot area and develop algorithms for understanding the elements of non-revenue water (lost water) as a means to reduce the cost of water delivery, improve management of scarce water resources, improve system operations, and save money for customers. The pilot will use advanced instrumentation with embedded LTE communications chips, such as smart water meters and pressure sensors to produce data to be used in the development of the software algorithms.
Reuse produced water.jpg Oil Gas well produced water localized treatment and recycle Coudersport Borough Eulalia Township PA USA
Establish medium volume produced water treatment facilities near clusters of oil & gas well pads for localized treatment of the produced water. These facilities separate the produced water into metals for disposal, then salt for resale, and potable water for reuse or discharge to the local sanitation authority publicly owned treatment works (POTW). The facilities would be industrial waste water pre-treatment customers of the POTW.
Cwa-logo.png Smart Water Technologies
The goal of this action cluster is to provide innovative solutions for managing drinking water, wastewater, stormwater and source water resources efficiently and effectively.

The smart decisions that balance energy usage with desired water quality and quantity will be supported through the development of cloud-based analytics that is driven with the “Big Data” from distributed array of environmental sensors. These “Internet of Things (IOT)” environmental sensors will be used to both monitor and control the environment. The new data will be supplemented with the data from the existing infrastructure such as SCADA historian databases and meter data. Additional data needs will be examined carefully to reduce their impact on operations. For example, water meter data is usually collected on a daily basis to prolong the battery life whereas the same data may be needed at five-minute intervals to generate an accurate demand picture. Innovative approaches that provide additional data through low-cost sensing and citizen participation will be explored.

Taoyuan City Water Resources Information System.jpg Taoyuan City Water Resources Information System
The core value of the System is to protect life and properties of people. The major purpose of developing the System is to apply technology of Smart Disaster Prevention and Internet of Things (IoT), and to build a resilient and sustainable city.
California WaterManagement Services Hero1.jpg Water Application Management
Watering the grass is one of those activities that is usually a “set it and forget it” process. But when you have 25 million square feet of landscape under irrigation, you can’t afford to waste a single drop. In our situation 1” of overwatering can cost as much as $40,000 a year.

So we set out to create a computerized “smart system” that operates with very little human intervention and is active and available at all times. This system is able to give directions to the over 456 field controller locations and receive feedback to help calibrate the system only applying what is necessary to keep the plant material healthy and thriving. There are many horticultural aspects that go into keeping landscape healthy. Of these water is among the most critical. Knowing exactly how much water to use is impossible unless you have a way to measure output and monitor system performance. We created a method to do just that. This method is controlled from a central location and can be accessed on tablets in the field.

Authors

Ed DavalosOC.jpgKenneth Thompson.jpgScott Pomeroy.jpegDerickLee.jpegDeborah Acosta.jpegWilfredPinfold.jpg

A smart water system is a type of water management system that uses digital technology to improve the efficiency, cost-effectiveness, and sustainability of water management.

Smart water systems can include a variety of technologies such as sensors, data analytics, and communication networks. These systems can help to improve the collection, treatment, distribution, and management of water resources, as well as reduce the environmental impact of water management.

Examples of smart water systems include:

  • Smart metering: This uses sensors to measure and monitor water usage, which can help to identify leaks, detect fraud, and improve billing accuracy.
  • Smart leakage detection: This uses sensors and data analytics to detect leaks in water systems and alert repair crews to fix them before they become major problems.
  • Smart irrigation: This uses sensors to monitor soil moisture and weather conditions, which can help to optimize irrigation schedules and reduce water usage.
  • Smart water quality monitoring: This uses sensors to monitor water quality and detect contaminants, which can help to ensure that water is safe to drink.
  • Smart water distribution: This uses data analytics to optimize water distribution and reduce the need for expensive infrastructure.

The benefits of smart water systems include:

  • Improved efficiency: Smart water systems can help to improve the efficiency of water management by reducing leaks, identifying inefficiencies, and optimizing water distribution.
  • Reduced costs: Smart water systems can help to reduce the costs of water management by reducing the need for expensive infrastructure, identifying inefficiencies, and detecting fraud.
  • Increased sustainability: Smart water systems can help to increase the sustainability of water management by reducing water usage, detecting and preventing contamination, and reducing the environmental impact of water management.
  • Better data: Smart water systems can provide data on water usage, water quality, and water distribution, which can help to inform better water management policies and strategies.
  • Increased reliability: Smart water systems can help to increase the reliability of water supply by reducing leaks, providing real-time monitoring, and early detection of issues in the water distribution network.

Water System

Our planet’s water supply is finite. There is as much water on earth today as there was yesterday, and as much as there ever will be. However, the human population continues to grow, and along with it the need for more fresh water. Further stressed by aging infrastructures, government mandates, and shrinking budgets, managing our planet’s supply of fresh water continuous to be critical to ongoing economic prosperity and social wellbeing.

Non-revenue water (NRW) is defined as treated drinking water that is lost in the distribution system before it can be delivered to customers. Worldwide, more than 32 billion cubic meters of treated water leak from urban water supply systems annually, equivalent to over $18 billion of NRW (source: Itron). Some of these losses, such as leaks are easy to find, but many go undetected, resulting in precious treated water going to waste, lost revenues, and higher production costs. Additional losses associated with theft and poor metering result in lost revenue to the utility. Water losses on the customer side do not affect utility revenue, but they do have a negative impact on sustainable management of precious water resources. An increasing number of water providers are realizing that deploying new technologies such as acoustic leak-sensing across their distribution systems makes both economic and environmental sense. For example, a pipeline leak as small 1/8 inch can lose more than 3,500 gallons per day (gpd) until it is detected and repaired.

Ultimately, the biggest water challenge facing our planet today is the assurance that its most valuable resource can be sustained beyond tomorrow. Just because water resources in a particular area are not in jeopardy today, does not mean they will not be tomorrow. Increasing populations will continue to migrate to, and expect more from, water-rich areas. While Smart City initiatives are finding more efficient ways to sustain the drinking water resource, the demand is ever growing and fresh water supplies will only continue to be strained. The challenge is to ensure they do not become exhausted.

Solutions and Benefits

To meet continually increasing customer expectations, utilities must become more efficient in the way they manage their water resources, handle the demands of their service territory, and engage with their customers. The answer is not to decrease or limit access to fresh water, but rather to increase the efficiency with which water is provided and consumed – decreasing the excess not the access. In other words, to be “resourceful.” We need to understand how and when water is being consumed and/or lost so that decisions can be made today that will positively impact the sustainability of our water resources tomorrow.

This is done through data. But not just data and not just big data. It is through the effective collection of accurate, reliable data and the use of tools to analyze this data. The solutions to managing a community’s water resources include understanding the demands of a utility’s service territory; ensuring sufficient supply is available by more efficiently identifying contributors to NRW (such as system leaks, aging assets, and unauthorized usage); reducing operational expenses and uncovering new revenue streams; and providing customers with access to that same set of information so that they can understand and manage their consumption.

According to the U.S. Environmental Protection Agency (EPA), Water Efficiency is “the use of improved technologies and practices to deliver equal or better service with less water.” The key is access to products and solutions that deliver on that need, and equipping utilities to be able to minimize spending, increase operational efficiencies, and uncover new revenue streams.

Advanced Metering Infrastructure (AMI) and multi-purpose networks, in addition to optimizing the billing process, transform data collected through the system into valuable and actionable intelligence for users across the utility, delivering benefits to the entire organization from billing and customer service to operations, engineering, and distribution, empowering them all to address conservation and resource sustainable opportunities. Delivering the information necessary to make decisions enables a utility to effect change that will have both an immediate and lasting impact on the availability, management, and use of water.

A number of utilities and organizations are already demonstrating their commitment to water efficiency through the use of advanced technologies, implementing solutions that facilitate program objectives. For example, Envision Charlotte in Charlotte, NC has programs in place to encourage the reduction of energy and water consumption in the downtown area of the city (known as Uptown). By bringing awareness to consumption levels through the deployment of advanced technologies capable of collecting hourly interval data, Envision Charlotte is encouraging change in the way energy and water are used and, as a result, showing that businesses can lower the expense of “keeping the lights on.” A key benefit to this program is having more businesses come to the Charlotte area, and therefore more people. This is just one “end” justified by the “means” that demonstrates the power and flexibility of technology capable of satisfying utility challenges around the world.

The City of Madison, WI, thanks to the collection of interval data, was able to establish thresholds for identifying possible customer-side leaks, and then proactively notifying the customer. As a result of the City’s efforts, the threshold for what alerts a possible leak has continually been lowered, or rather fine- tuned, over the past 3 years.

Another example of actuating change within a utility’s operations and customer base is the City of Cleveland, OH. Following the implementation of an AMI, the City has also been able to proactively identify potential customer-side leaks and, in turn, proactively notify their customers. The resulting benefits have been recognized by both the utility and the end customer. Following notification from the utility, Cleveland Water’s customers have the opportunity to minimize the impact to their water bill, and Cleveland Water has seen a significant decrease in the number of bill-related calls to their call center. Furthermore, interval consumption data, coupled with the metered data from district meters, enables utilities to identify potential system losses through District Metering. System losses could be a result of leaks, aging meters, incorrectly sized meters, and/or unauthorized consumption. Having the ability to identify these potential losses prior to rolling a truck results is an immediate, positive impact to the bottom line.

Utilities that are challenged with drought conditions can monitor customer consumption to report on, and enforce, compliance during periods of water restrictions. Knowing when customers are using water, again without having to roll a truck, further decreases operational costs and increases the opportunities to save a valuable resource.

In addition to identifying system losses via the collection of time-synchronized data, with the installation of acoustical leak sensors, a utility can continuously audit the integrity of their distribution system. Knowing when leaks occur, before they damage public or private property, further decreases operational expenses and increases revenue opportunities. With proactive leak detection, utilities are able to reduce the amount of water lost, reduce the cost of repair, and as a result, reduce their NRW percentage.