
Software and Systems Modeling (2022) 21:281–309
https://doi.org/10.1007/s10270-021-00907-9

REGULAR PAPER

MIKADO: a smart city KPIs assessment modeling framework

Martina De Sanctis1,2 · Ludovico Iovino1,2 ·Maria Teresa Rossi1,2 ·Manuel Wimmer3

Received: 15 October 2020 / Revised: 30 April 2021 / Accepted: 28 June 2021 / Published online: 4 August 2021
© The Author(s) 2021

Abstract
Smart decision making plays a central role for smart city governance. It exploits data analytics approaches applied to collected
data, for supporting smart cities stakeholders in understanding and effectively managing a smart city. Smart governance is
performed through themanagement of key performance indicators (KPIs), reflecting the degree of smartness and sustainability
of smart cities. Even though KPIs are gaining relevance, e.g., at European level, the existing tools for their calculation are
still limited. They mainly consist in dashboards and online spreadsheets that are rigid, thus making the KPIs evolution and
customization a tedious and error-proneprocess. In this paper,we exploitmodel-driven engineering (MDE) techniques, through
metamodel-based domain-specific languages (DSLs), to build a framework called MIKADO for the automatic assessment
of KPIs over smart cities. In particular, the approach provides support for both: (i) domain experts, by the definition of a
textual DSL for an intuitive KPIs modeling process and (i i) smart cities stakeholders, by the definition of graphical editors for
smart cities modeling. Moreover, dynamic dashboards are generated to support an intuitive visualization and interpretation
of the KPIs assessed by our KPIs evaluation engine. We provide evaluation results by showing a demonstration case as well
as studying the scalability of the KPIs evaluation engine and the general usability of the approach with encouraging results.
Moreover, the approach is open and extensible to further manage comparison among smart cities, simulations, and KPIs
interrelations.

Keywords Smart Cities · MDE · KPI · DSL · Smart Governance

1 Introduction

Despite the diverse definitions of smart cities [1], they all
target the achievement of a sustainable economic, societal,
and environmental development, while enhancing the qual-
ity of living for their citizens. In this context, smart decision

Communicated by Zhenjiang Hu.

B Ludovico Iovino
ludovico.iovino@gssi.it

Martina De Sanctis
martina.desanctis@gssi.it

Maria Teresa Rossi
mariateresa.rossi@gssi.it

Manuel Wimmer
manuel.wimmer@jku.at

1 Gran Sasso Science Institute, L’Aquila, Italy

2 National Interuniversity Consortium for Informatics (CINI),
Rome, Italy

3 CDL-MINT, Department of Business Informatics – Software
Engineering, JKU Linz, Austria

making for sure plays a central role [2]. It exploits data ana-
lytics approaches applied to collected data, coming from
heterogeneous data sources and providers, with the aim of
supporting smart cities stakeholders in understanding and
effectively managing a smart city. However, decision mak-
ing for smart cities is challenging due to their complex nature.
Indeed, smart cities are characterized by different dimensions
(e.g., mobility, education, environment), each managed by
different stakeholders (e.g., public administrations, private
institutions) who not always communicate with each other.
This makes it difficult for public administrations to have a
complete overview of the city.

Smart Governance aims to overcome this limitation. It
concerns the use of technology in processing information
and decision making enabling open, transparent and par-
ticipatory governments [3], by supporting the knowledge
sharing among the involved actors. The smart governance
is performed through the management of key performance
indicators (KPIs) [4] representing raw set of values that
can provide information about relevant measures that are
of interest for understanding the progress of a smart city.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

282 M. De Sanctis et al.

KPIs are gaining relevance at European level. Indeed, the
European Commission published an agenda [5] containing
the so-called sustainable development goals (SDGs) to be
achieved in 2030 to promote a smart,1 sustainable, and inclu-
sive growth of European cities. To this aim, on top of the
SDGs, the International Telecommunication Union (ITU)
drafted a list of all the KPIs for smart sustainable cities
(SSCs), along with its collection methodology [6]. Other ini-
tiatives and international projects (e.g., [7,8]) also targeted
the definition of smart cities KPIs to capture the performance
of a city in multiple dimensions and to support a transparent
monitoring and the comparability among smart cities.

Information and communications technologies (ICT) can
help in managing different aspects of complex systems, such
as smart cities (e.g., [9]). In particular, model-driven engi-
neering (MDE) [10] techniques are widely used to represent
complex systems through abstract models. Examples exist
also in the smart city context (e.g., see [11,12]). Several
European projects promoting KPIs definition and monitor-
ing have been funded (e.g., see [7,13]). However, there is
still an important cornerstone missing, namely a compre-
hensive methodology supporting (i) systematic and uniform
modeling of smart cities and KPIs, (i i) automatic KPIs mea-
surement on top of candidate smart cities, and (i i i) intuitive
representation and visualization of assessed KPIs. This lack
of comprehensiveness represents an obstacle in the man-
agement of smart cities. It makes the knowledge sharing
difficult which, in turn, negatively affects the smart city
decision-makingprocess.This ismainlydue todifferent chal-
lenges that can be observed in real scenarios. KPIs reflect the
degree of smartness and sustainability which, however, dif-
fers among different cities, thus implying the need for KPIs
customization. Moreover, KPIs evolve over time [14]. New
KPIs can be defined or existing ones can be implemented
in slightly different manners. However, the currently avail-
able frameworks (e.g., online spreadsheets, Excel) for the
KPIs calculation are still far from being flexible enough.2

On the contrary, KPIs definition models are embedded in the
frameworks allowing users to only get the results of their
measurement. As a consequence, the KPIs evolution man-
agement is difficult to handle and it represents an error-prone
task [15].

With these premises, we argue that it is necessary to
develop a systematic methodology allowing smart city stake-
holders to define, measure and visualize the KPIs of interest
for their cities in order to efficiently assisting the decision-
makingprocess of the smart citiesmanagement. To tackle this
challenge, we propose in this paperMIKADO—a Smart City
KPIs Assessment Modeling Framework supporting (i) the
uniform modeling of both smart cities and the KPIs, (i i) the

1 https://sustainabledevelopment.un.org/sdgs.
2 Key performance indicators in Power Pivot at https://bit.ly/37EFR9r.

automatic calculation of KPIs, and (i i i) graphical visualiza-
tion of assessed KPIs by means of dynamic dashboards. The
resulting approach provides a standard, but at the same time,
customizable process for smart cities governance adminis-
trators. We aim at exploiting MDE techniques to provide
domain-specific languages (DSLs) [16] as tools specifically
devoted to the domain experts for the modeling of smart
cities and corresponding KPIs, while delegating the KPIs
measurement, with its complexity, to an evaluation engine
implementing the KPIs calculations. The choice of the name
MIKADO is related to the famous game inwhichMIKADO is
the name for the most valuable stick.3 The connection with
our approach lies in the fact that it can help to get the most
value out of a bunch of “data sticks.”

The presented approach builds on top of previous work.
In [17], we presented the flexible architecture of the tool,
identifying both required and optional components and func-
tionalities needed for realizing the automatic KPIs assess-
ment.We also showed flexibility points allowing for different
specification of the architecture (e.g., standalone, hybrid,
online) through diverse technologies. Precursor work on the
modeling editor components, showing both graphical and
textual views, has been presented in [18]. The extensions of
this work w.r.t. [17,18] are manifold. Firstly, we show how
the evaluation engine has been implemented with a complete
model-based approach; moreover, we show a new exten-
sion of our framework that exploits model-driven dashboards
devoted to the visualization of the KPIs model once it is actu-
alized with the results of the evaluation. Secondly, we further
improved the scalability of our evaluation engine w.r.t. [17],
by performing relevant code refactoring in the framework
that reduced the computation time about 50%. We evalu-
ated the approach with several smart cities also varying the
KPIs definition in order to see how the framework implemen-
tation scales with real-world exemplary models. Moreover,
we evaluated the understandability of the presented DSL for
specifying KPIs, as the main prerequisite for the usability of
the approach, by involving smart cities and/or KPIs experts.
The results are positive and encourage to further improve the
presented approach with a self-contained tool support. The
process, methodology, and the components treated in this
paper are core of the assessment process and they are needed
to enable the architectural framework described in [17].

The rest of the paper is structured as follows: Sect. 2
describes the role of KPIs in smart decision making. In
Sect. 3, we describe the overall approach for the automatic
KPIs assessment and we expose the artifacts composing the
proposed approach. Subsequently, in Sect. 4we show the fea-
sibility of the approach by applying it on a real-world case
study. In Sect. 5, two evaluations of the proposed approach

3 https://en.wikipedia.org/wiki/Mikado_(game).

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

MIKADO: a smart city KPIs assessment modeling framework 283

are reported. In Sect. 6, related work is reported, and finally,
Sect. 7 concludes the paper and proposes future work.

2 Key performance indicators for smart
decisionmaking

KPIs [4] support smart governancemanagers in continuously
evaluating smart cities by measuring their sustainability
and smartness, thus significantly affecting the smart city
decision-making processes. The aforementioned SDGs [5]
and the KPIs released by the ITU [6] highlight the relevance
that KPIs are gaining worldwide attention. In general, KPIs
are defined as visual measures of performance, supported by
a specific calculated field. “A KPI is then designed to help
users quickly evaluate the current value and status of ametric
against a defined target” is what Microsoft research reports
online [19]. In the transition of cities to smart cities, KPIs
are used as measurement that facilitate monitoring and help
to predict and evaluate the transition process. In particular,
the ITU KPIs [6] are chosen as potentially applicable to all
cities, thus essentially representing general guidelines such
that smart cities managers can interpret and adapt them to
their managed smart cities.

Specifically, KPIs are elicited and defined by standard-
ization bodies, such as ITU [6], along with their collection
methodology, standard definitions and formulae. However,
multiple KPIs sources exist. For instance, in this work we
also consider CITYkeys [7] and DigitalAQ [8] (see Table 2
in Sect. 4.1)) for completeness purposes. To give a concrete
example, the KPI called Air Pollution (AP) measures the air
quality based on the values reported for specific pollutants.
In particular, it is based on the Air Quality Indexes (AQI)
measured from the registered air concentration of particu-
late matter (PM), nitrogen dioxide (NO2), sulfur dioxide
(SO2) and ozone (O3), which are calculated with respect
to given legal limits established by the law (see formula (3)
in Sect. 4.1). The pollutant showing the highest AQI (see
formula (4) in Sect. 4.1) determines the AP KPI that is eval-
uated w.r.t. five evaluation classes, namely excellent, good,
discrete, bad and terrible (see formula (5) in Sect. 4.1).

The complexity of smart cities, which actually are systems
of systems, makes the smart decision making and the KPIs
assessment challenging tasks. More precisely, KPIs contin-
uously evolve [14] w.r.t. the evolution of cities’ needs and
context. The selection of KPIs is driven by aspects that can
change in time (e.g., data availability). This is also due to the
digital revolution [20] which is taking place in these years.
For instance, we can think of how the advent of electrical
vehicles has changed the urban scenario, by carrying out new
needs (e.g., finding the optimal positioning of car chargers)
emerged only in the last few years. Another example may
be related to the KPIs involving the network coverage (e.g.,

wireless broadband coverage KPI). After the advent of 5G,
the formula for this KPI has been adapted, by including the
5G network coverage, in addition to 4G and broadband con-
nections.

Moreover, smart cities may differ in several aspects, based
on their stage of economic development, population growth,
available services. Geographical implications must also be
considered. Every country has different conditions and KPIs
relevance can vary depending on the spatial granularity (e.g.,
small, medium and metropolitan cities). For instance, sus-
tainable mobility is more developed in metropolitan cities
than in small- and medium-sized cities.4 As a consequence,
different smart cities can be interested in specific KPIs. This
aspect strongly implies the need for KPIs customization,
where, for customization we mean the selection of appro-
priate KPIs to be evaluated on a given smart city. In other
words, the selection of KPIs must be driven by the subject
smart city and its peculiarities, notwithstanding that KPIs
definitions and formulae constantly adhere to those provided
by the standardization bodies.

2.1 KPIs assessment frameworks for smart cities:
process perspective

With these premises and by inspecting several smart city
projects dealing with the performance evaluation in smart
cities (e.g., [6–8]), we extracted the basic process used for
the realization of frameworks for the automatic assessment
of KPIs as illustrated in Fig. 1. Basically, it envisions five
main phases referring to the frameworks development and
operation stages. During the analysis phase, one of the main
activity consists in identifying and defining the KPIs. This
activity is fundamental in order to select the right indicators,
and usually, it has to be validated with the aid of stakehold-
ers. In this phase also data collection procedures have to be
applied for the common and transparent monitoring in a way
that the selected data andKPIs can be applied acrossmultiple
cities subjects of the evaluation. This leads again to the point
that KPIs should be tailored for the city. When the KPIs are
identified, the implementation phase can start and the frame-
work supporting the assessment can be developed. Once in
preparation, the assessment framework is ready to use. In this
phase, input data can be collected, with the intent of insert-
ing data related to both existing smart cities or future projects
to be evaluated. At the execution phase, the automatic mea-
surement of KPIs can be performed in order to get quality
assessment results about the subject of the evaluation. Even-
tually, at the visualization phase, results can be provided in
an accessible way (e.g., tables, graphics), such that to make
them easier to interpret and understand.

4 Polis 4.0 - Smart City Index 2018 https://bit.ly/3xnyHEF.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

284 M. De Sanctis et al.

Fig. 1 Basic process for the development of frameworks for the KPIs assessment in smart cities

2.2 KPIs assessment frameworks for smart cities:
requirements perspective

Analyzing different smart city projects dealing with the per-
formance evaluation of smart cities further allowed us to
extract a set of relevant requirements that a framework for the
automatic assessment of KPIs must satisfy, in order to effec-
tively and efficiently support decision-making processes. In
particular, we noticed that these projects can be essentially
grouped into three main categories, based on the type of
implementation strategy and/or target platform they exploit,
namely (1) manual approaches, where essentially the KPIs
definition, data collection and KPIs measurement are manu-
ally performed; (2) Spreadsheet-based approaches mainly
relying on the use of Excel spreadsheets and the Power
Pivot feature.5 In these approaches, an external data source
(e.g., a MS SQL database) is configured to host the required
data. These data are then given as input to the KPIs for-
mulae defined in Excel that will actualize the values and
present the results. (3) Web-based platforms (e.g., [7]) for
those approaches supported by an online platform exposing
defined KPIs whose calculation is offered as platform func-
tionalities. However, each of these categories shows some
drawbacks and limitations, which helped us to derive the fol-
lowing requirements.

2.2.1 Automation

Some of the inspected projects perform a manual evaluation
of the input subjects, where the obtained results are then
filled into reports to be shown and discussed with the other
stakeholders. Of course, even if this manual process can be
precise, it is not scalable since it is not automated and when
the data grows, the evaluation can suffer of procedural delays.
For this reason, the first requirement we argue is that the
assessment process has to be automated. Moreover, if an
automated evaluation is available, the system can easily give
the evaluation results in multiple output formats, e.g., Excel,
textual files, CSV, in order to enable further elaboration.

5 https://bit.ly/3dT1zwV.

2.2.2 Separation of concerns

Another issue we observed is the lack of separation of con-
cerns (SoC), especially in Excel spreadsheets. It is totally
delegated to the user composing the spreadsheet to keep, for
instance, separate the smart city modeling from the KPIs def-
inition and formulae. As a consequence, if the spreadsheet
is not well structured, changing the subject of the evaluation
can lead to copy and paste activities, with all the related prob-
lems. In addition, oftenKPIs definitionmodels are embedded
in the frameworks allowing users to only get the results of
their measurement, thus changes are not even allowed. SoC
is also about the competences of the concepts related to the
KPIs definition and application, that are two different fields.

2.2.3 Domain-specificity

Spreadsheets show several limitations [21] from this point of
view.Although providingmultiple functionalities supporting
mathematical calculations, data analysis and modeling, they
have not been conceived for the definition and measurement
of KPIs.What we observed in spreadsheet-based approaches
is that the definition and calculation of KPIs are highly cou-
pled, therefore KPIs experts are forced to be aware of the
specific language underlying the framework (e.g., macros
and procedures in Excel). They must learn and be trained to
compose formulae in Excel (or to build programs), which
can be a tedious and time consuming task, if we consider
that Excel formulae can be verbose and complex. For this
reason, we argue that offering a domain-specific language
would be convenient, also considering the SoC principle and
the stakeholders distribution in a smart governance team.

2.2.4 Usability

Notably manual and spreadsheet-based approaches exhibit
usability issues. Manual approaches are definitely error-
prone due to their nature. With spreadsheets, instead, usabil-
ity issues arise, for instance, when a connected external
source, such as a database, is used for injecting the data
needed to calculate the KPIs about the subject. In this case,

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

MIKADO: a smart city KPIs assessment modeling framework 285

also the database should offer a user-friendly UI to fill in
the data. This might mean to spend other resources to build
applications for data entry, with the result of having two
separate systems,with all the related issues of possible incon-
sistencies [22]. For instance, if the database schema of the
connected source changes, new inconsistencies can impact
the formulae in the spreadsheet. For this reason, we high-
light that the KPIs assessment framework has to offer usable
interfaces or languages to specify required data andKPIs for-
mulae.

2.2.5 Openness

As previously discussed, openness is mandatory to manage
the KPIs evolution and customization. Spreadsheets exhibits
a good degree of openness, in general. Indeed, if KPIs formu-
lae need to be changed or customized, or evolve over time,
they can support that, with of course the limits of the tar-
get platform (as for instance the limitation on the number of
records that can be stored without degrading). To the con-
trary, Cloud or Web-based platforms are not usually released
as open, in order to customize and extend the KPIs definition.
In fact, they are often conceived asmulti-tenant platforms and
this often implies that customization is not supported, being
out of the business plan. In other words, to accommodate
multiple clients, Web-based platforms tend to be abstract, to
cover as much as possible many clients at least to a certain
extent. Single-user customization is not convenient in terms
of costs and strategies. Consequently, the used KPIs models
cannot be extended or customized to accommodate specific
smart cities requirements. As a consequence, we argue that
KPIs assessment frameworks should be evolutionary and
open, meaning that KPIs formulae should be inspectable
and modifiable.

2.2.6 Graphical

More advanced platforms can be built in order to support the
process. Web-based platforms usually offer very powerful
visualization tools showing the results of the KPIs evalua-
tion, although they are not released as open. We argue that
supporting a graphical visualization of KPIs evaluated over
a given subject is quite relevant for the comprehensibility of
the analysis especially for non-experts stakeholders and to
ease the knowledge sharing among stakeholders.

2.2.7 Flexibility

Web-based platforms, in general, show the lack of active
engagement of domain experts involved in designing, oper-
ating, and controlling activities. In addition, KPIs definition
models are embedded in the frameworks allowing users to
only get the results of their measurement. In fact, most of

them offer pre-packaged KPIs definitions, that the user can
select in order to get the results for the subject. They also pro-
vide very intuitive forms for the data input. However, these
platforms focusmainly on data visualizationwithout offering
the flexibility needed by an expert, for instance, for evolution
or customization purposes. As an example, if a new activity
is needed in order to process the output of the evaluation, we
can rely only on the output format of the assessment.

2.2.8 Scalability

Last but not least, scalability is a mandatory requirement
to guarantee the effectiveness of a running KPIs assessment
approach that is applied over multiple and complex smart
cities in order to measure hundreds of KPIs. Furthermore, in
the smart governance context, simulation can be used to arti-
ficially manipulate smart cities data in order to see how KPIs
results are affected. For this reason, scalability is an impor-
tant issue, especially in a simulation environment, since KPIs
evaluation should be performed in a timelymanner.However,
manual and spreadsheet-based approaches tend to show scal-
ability issues when the size of the subject cities and/or the
number and complexity of KPIs increase. Web-based plat-
forms clearly show a better degree of scalability with the
novel front-end development technologies and libraries, from
one side, and back-end and persistence engines technologies,
from the other side.

We sum up the needed requirements and how the currently
available frameworks support (�), partially support (∼) or
not support (-) them, in Table 1. In detail, the automation
of the KPIs assessment process is fundamental to support
automatic evaluation. It should further exhibit SoC in order
to keep data and KPIs definition separated, also to better
cope with the different stakeholders involved in the process.
Domain specificity is a way to support usability too. Stake-
holders should not be forced to use and learn technicalities
in order to use the evaluation framework, but they have to
be trained and supported to use constructs of the domain
they already know. Usability of the framework is an impor-
tant requirement. If the user has to learn a new language or
technology to implement the assessmentmeasurements, with
verbose syntaxes or even programming languages, might not
be acceptable. The use of DSLsmay help to reduce this prob-
lem, since the domain specificsmay support the learningwith
less training. Openness means that the framework should
allow to inspect the KPIs definition, extend them, select the
ones needed for specific requirements. Flexibility is about the
flexibility of the framework to support different candidates,
subjects of small and large scale. For instance, evaluations
might be performed on entire cities, projects or proposals.
Scalability means that the evaluation should scale also for
large projects without suffering of performance degradation.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

286 M. De Sanctis et al.

Table 1 Evaluation of KPIs assessment frameworks

Requirements

Approach Automation SoC Domain specificity Usability Openness Graphical Flexibility Scalability

Manual – � – – – � ∼ –

Spreadsheets � ∼ – – � � ∼ –

Web platforms � � � � – � – �
MIKADO � � � � � � � �

In conclusion, even though existing approaches are tool sup-
ported, we claim that an approach for the automatic KPIs
assessment, relying on uniform but customizable models
still does not exist. Due to these challenges and limita-
tions, faced in the requirements listed above, we propose the
MIKADO framework for the automatic KPIs assessment that
is based on the uniform modeling of both smart cities and
the KPIs selected to evaluate them. The approach supports
the KPIs customization to different cities and requirements
and the KPIs evolution over time, by exploiting MDE tech-
niques. It is inspired by software quality assessment practices
(e.g., [23]), and it basically enables a round-trip process
for the performance analysis of smart cities and the results
interpretation, assisting smart cities administrators to per-
form the decision-making process. In the next sections, we
are demonstrating how MIKADO fulfills all the identified
requirements, with a demonstration case and an evaluation
based on different smart cities and KPIs definitions. In sum-
mary, as we will present next, several properties are realized
by design such as automation, SoC, domain specificity, open-
ness, and graphical (cf. Sect. 3). Flexibility is shown by a
demonstration case (cf. Sect. 4), and scalability and usabil-
ity are shown by experiments as well as by an expert survey
(cf. Sect. 5).

3 The proposed KPIs assessment approach

In this section, we start by giving an overview of the pro-
posedMIKADOapproach, by describing themethodologywe
envisage for enabling an automatic KPIs calculation on top
of smart cities under evaluation. We also sketch the main
tools supporting the methodology and the relations among
them. Then, we introduce the two main artefacts, namely the
Smart City Metamodel and the KPIs Metamodel as well as
the evaluation engine for calculating the KPIs.

All the described artifacts of our approach have been
implemented and are openly available.6

6 https://github.com/gssi/SmartCityModeling.

3.1 MIKADO at a glance

Figure 2 gives an overview of the proposed approach. The
box modeling highlights the design tasks we envisage and
represents the scope of this work. In particular, it includes
the modeling tool of the smart cities (Smart City Modeling)
and the other one for the definition of KPIs (KPIs modeling).
The smart city modeling is supported by a graphical and
textual editor for the smart city design, implemented in [18],
whereas theKPIsmodeling can be performed through the use
of a textual syntax (see icons on top of the modeling boxes in
Fig. 2). These components have been realized after we have
analyzed the smart city domain, its concepts and the relation
among them. Furthermore, we performed an investigation
about how KPIs can be measured, i.e., what type of calcula-
tions and data they require. With the proposed approach, we
are able to define a unique KPIs definition model, valid for
different smart cities, by using the KPIs modeling tool. This
does not mean that the KPIs model is static. On the contrary,
it is unique but not universal because its structuremay change
over time and the number of KPIs may change as well across
the different smart cities, to manage both the KPIs evolution
and customization needs.

Given a Smart City Candidate, its corresponding smart
city model and the KPIs definition model conforming to the
metamodels, which we will describe in the following, these
will be used as input for an Evaluation Engine that will inter-
pret and calculate the modeled KPIs for the candidate city.
The latter component is part of theComputation box in Fig. 2.
The evaluation engine produces a list of KPIs, identified in
the KPIs definition model, and reports concrete values in
the evaluated KPIs model. This model will be transformed
into a KPIs dashboard through a code generation process
and through a Pretty Printing component, which produces a
detailed log of the evaluation. The log supports a fast feed-
back and debugging process. We grouped these instruments
in a Reporting box in Fig. 2. The generated dashboards
will represent a relevant instrument to guide the decision-
making process performed by Smart Governance Systems for
the candidate smart city. For instance, it supports the smart

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

MIKADO: a smart city KPIs assessment modeling framework 287

KPIs definition modelSmart City Model

Smart City Modeling

Smart City
Metamodel

KPIs Modeling

KPIs Metamodel

Evaluated
KPIs model

Evaluation Engine

KPIs dashboard

log

Pretty
printer

Modeling

Computation

Reporting

reads writes

conformsTo

conformsTo produces

produces

Smart City Candidate

reflects

Smart Governance
Systems

manages Helps decision making

reads

conformsTo

reads

refersTo

refersTo

Fig. 2 Overview of the MIKADO approach

governance managers in looking for causes of smart cities
problems highlighted by the KPIs.

3.2 The Smart Cities Metamodel

In this subsection, we present the Smart City Metamodel. In
Fig. 3, we show the metamodel we devised to design smart
cities. In particular, considering our interest in supporting
decision making, we mainly target the data analytics portion
of the metamodel. However, it has already been conceived
to include additional aspects, such as IoT infrastructures and
stakeholders.

The SmartCityModel is specified as a composition ofmul-
tiple SmartCity entities, thus to model different smart cities.
Each SmartCity can be, in turn, composed by several enti-
ties, which have been organized in three packages, namely
Infrastructure, DataAnalytics, and Stakeholder.

As regards the Infrastructure package, we refer to both the
physical and organizational structures and facilities needed
for the operation of a smart city. We assume that a smart city
can rely on a PublicInfrastructureLayer that can be com-
posed of different InfrastructureComponent, one for each
infrastructure set up in the city. For instance, we modeled
a MonitoringInfrastructure that can be composed of sev-
eral IoT devices, modeled as IoTDevice and defined by the
attributes model and location, giving details on the specific
device and its physical position. IoTDevice canbe further spe-
cialized in Sensor and Actuator. TheDataAnalytics package

defines the concepts required to describe the data related
to a smart city. Thus, here we find the generic concept of
Data, as part of a DataPackage, that is further specialized in
different types of values (i.e., StringValue, RealValue, Inte-
gerValue, BoolValue). Moreover, data may originate from
different sources. Therefore, we modeled a Source for each
Data that, in turn, can be specialized in different types.
More precisely, we consider that we can gain data from one
or more MonitoringInfrastructures among those modeled
in the Infrastructure package, from SocialMedia, from an
OpenData dataset, or that we can obtain ProvidedData from
a smart city Stakeholder. Here, the prominent Monitoring-
Infrastructure we consider is the IoT network of the city,
such as the infrastructure made by the sensors and actuators
deployed around the city and enabling for different IoT sens-
ing (e.g., traffic monitoring, smart grids). For ProvidedData,
we intend data requested from third parties for a given reason
(e.g., data from telco operators). Often, in this case, data are
provided in a specific format depending on the request rea-
son. Both the SocialMedia and OpenData components are
defined by the attribute url pointing to the specific resource
location of data. The url attribute can be used to automati-
cally and continuously retrieve data from publicly available
data sources, e.g., open data portals, social networksAPI, etc.
In particular, SocialMedia data can be used, for instance, in
the participatory governance context (e.g., in [7]). Lastly, the
Stakeholder package contains the before mentioned Stake-
holder component. It allows designers tomodel every type of

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

288 M. De Sanctis et al.

Fig. 3 Smart City Metamodel

smart cities stakeholders (e.g., private and public institutions,
companies), which can act or not as data providers.

3.3 The KPIs Metamodel

We now describe the second metamodel artifact required for
the KPIs definition. Figure 4 reports an excerpt of the KPIs
Metamodel.

It is inspired from themetamodel presented in [23], used to
define quality characteristics of modeling artifacts. Accord-
ing to the KPIs sources we analyzed for smart sustainable
cities (e.g., [6–8]), KPIs are hierarchically organized. A Kpi-
Model, indeed, is composed bymultipleDimensions that can
also contain different sub-dimensions. Then, each Dimen-
sion is composed by different Category entities that, in turn,
contain a set of KPIs. Each KPI is associated with only one
category and each category is composed by multiple Param-
eters, referring to the specific parameters that can be used in
the calculation of the KPIs pertaining to that category. Each
KPI is described by the name, description and unit attributes
and has a Value that, in turn, is associated to a ValueType.
The unit attribute helps designers in specifying and mea-
suring quantities [24], although the explicit representation
in the type system is subject to future work. The Value-
Type is specialized into two main different types, namely
RangedValue and CalculatedValue. The former is required
to model those KPIs whose calculation methodology pro-
duces a value which has to be compared against a Range
of values to get the final KPI measure. The Range com-

ponent is further described by the rangeName, min and max
attributes. The latter, instead, refers to thoseKPIs for themea-
surement of which it is sufficient to perform a calculation.
In particular, calculations can be made over different Single-
Value that can be of different types (i.e., StaticRealValue,
BoolValue, RealValue, IntegerValue, StringValue). Such
single values are associated to a Parameter. Moreover, cal-
culations can be made also on AggregatedValue of different
types (i.e., AggregatedBoolValue, AggregatedRealValue,
AggregatedIntegerValue, AggregatedStringValue, Aggre-
gatedRangedValue). Each type of AggregatedValue is
defined by the attribute operation whose type is specified by
the enumeration Operation, which defines the typical oper-
ations that can be used to calculate KPIs (e.g., MAX, AVG).
Some of the types of SingleValue andAggregatedRealValue
contain an attribute called targetvalue that can be instanti-
ated with the desired value for the defined KPI.

We want to highlight here that we built both the Smart
City Metamodel and theKPIs Metamodel after analyzing the
KPIs documentations provided, for instance, by ITU [6] (see
Sect. 4). This way, data types, data sources and operators
correspond to those envisaged by the standardization bodies.
This does not exclude that they may evolve or more complex
ones (e.g., vectors, matrixes, non-standard operators) might
be required, due to theKPIs evolution discussed in Sect. 2. To
this aim, both metamodels can be easily extended by means
of a single modeling step, i.e., adding a child element to the
Data or Source elements, in the Smart City Metamodel or
adding a child element to the SingleValue element in theKPIs

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

MIKADO: a smart city KPIs assessment modeling framework 289

Fig. 4 KPIs Metamodel

Metamodel. Including a new operator would require to add
it in the Operation enumeration in the KPIs Metamodel and
further implement it in the evaluation engine. Considering
all these aspects, the presented approach may result to be a
perfect candidate for a multi-level modeling [25] realization,
alternatively to the one provided in this work.

3.4 The evaluation engine

The computation component involved in the proposed KPIs
assessment approach is the Evaluation Engine. It receives
as input the KPIs definition model and the smart city can-

didate under study, in terms of the smart city model. It
returns an evaluated KPIs model for the subject. The eval-
uation engine has been implemented with Epsilon, via the
Epsilon Object Language (EOL) [26]. EOL is a language
built on top of the eclipse modeling framework (EMF) that
can be used both as a standalone generic model management
language or as an infrastructure to build task-specific lan-
guages, as done for this work. The evaluation engine can be
activated by a Java main method located in the SmartCityE-
valuationEngine, whose code is reported in Listing 1. The
main method of this class loads the input models, i.e., smart
city model and KPIs Definition model passed as parame-

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

290 M. De Sanctis et al.

ters (lines 3–6) and executes the EOL script at line 11. This
code can be invoked by a plugin which can be activated by
selecting the right models, based on the file extension.

1 public List <IModel > getModels(String smartcity , String

kpimodel) throws Exception {

2 List <IModel > models = new ArrayList <IModel >();

3 models.add(createEmfModel ("smartcity", smartcity ,

4 "smart_city.ecore", true , false));

5 models.add(createEmfModel ("kpi", kpimodel ,

6 "kpi.ecore", true , false));

7 return models;

8 }

9 @Override

10 public String getSource () throws Exception {

11 return "epsilon/evaluation -engine.eol";

12 }

Listing 1 Snippet of the Java Evaluation Engine.

An excerpt of the invoked EOL script is reported in Listing 2.
This main script takes as input the smart city model and, for
each defined city (line 3), it calculates all the KPIs defined
in the KPIs model (lines 5–9). It prints the description of the
KPIs (line 6) and the result of the evaluation (line 7) in the
console.

1 import "kpi -providers.eol";

2
3 for (smartc in smartcity!SmartCity.all) {

4 ("===KPI model calculation applied on "+

smartc.city+"==").println ();

5 for (mykpi in kpi!Kpi.all) {

6 mykpi.description.println ();

7 (smartc.collect(sc|sc.get(mykpi)).first+"

"+ mykpi.unit).println ();

8 "===============================".println();

9 }

10 }

Listing 2 Snippet of the Main EOL Script.

This script uses a fundamental operation get() invoked on the
current KPI that basically makes all the computation. This
operation is defined in the EOL file called kpi-providers.eol,
imported at line 1. For sake of completeness, we report also
the imported EOL script in Listing 3 where the operation
get() has been defined for each ValueType. For instance,
lines 5–14 report the operation for the SingleValue, where
the actualizedValue of the KPIs model stores the calculated
value. In order to get the result, the engine retrieves the
parameters needed for the calculation through name-based
references between the KPIs definition model and the smart
city model (lines 6–9). It is worth noting that if the smart
city model does not contain the definition for the parame-
ter involved, this operation will not actualize the result. The
same for the AggregatedValue that recursively calculates
the result until the single values. Lines [37–48] are the trans-
lations for the operations defined in the KPIs model, e.g.,
SUM, AVG, to the language implementing the engine. If
other operations are needed, we just need to add other cases
in this switch statement. For instance, we specified the CEN
operation (line 46) to specifically measure the value of one
100.000th of the city population, which is often used in the
calculation of several KPIs whose value is measured based
on the city inhabitants (e.g., see Sect. 4.1, formula (1) for

the Green Areas KPI). Moreover, we added a check for those
citieswith less than 100.000 inhabitants, namely if the passed
value (i.e., the number of inhabitants) is less than 100.000,
the operation returns 1.

1 operation smartcity!SmartCity get(kpi:
kpi!Kpi): Any{

2 return kpi.value.valuetype.get(self);
3 }
4
5 operation kpi!SingleValue get(city:

smartcity!SmartCity): Any{
6 self.actualizedvalue=city.data.
7 collect(dat|dat.data).flatten()
8 .select(d|d.name==self.
9 parameter.name).value.first;
10 return city.data.collect(dat|dat.data).
11 flatten()
12 .select(d|d.name==self.
13 parameter.name).value.first;
14 }
15
16 operation kpi!StaticRealValue get(city:

smartcity!SmartCity): Any{
17 return self.staticvalue;
18 }
19
20 operation kpi!AggregatedValue get(city:

smartcity!SmartCity): Any{
21 self.actualizedvalue=self.values.
22 get(city , self.oper);
23 return self.values.get(city , self.oper);
24 }
25
26 operation kpi!AggregatedRangedValue get(city:

smartcity!SmartCity): Any{
27 self.actualizedvalue=self.ranges.
28 select(r|r.min <= self.values.get(city ,

self.oper).first and self.values.get(city ,
self.oper).first <= r.max).rangeName.first;

29 return self.ranges.select(r|r.min <=
self.values.get(city , self.oper).first
and self.values.get(city ,
self.oper).first <=
r.max).rangeName.first;

30 }
31
32 operation OrderedSet <kpi!ValueType > get(city:

smartcity!SmartCity , oper:
kpi!EEnumLiteral): Any{

33 return self.collect(s|s.get(city)).
34 getop(oper);
35 }
36
37 operation Any getop(op: kpi!EEnumLiteral): Any{
38 switch (op) {
39 case kpi!Operation#GET: return self;
40 case kpi!Operation#SUM: return self.sum();
41 case kpi!Operation#AVG: return

self.sum()/self.size();
42 case kpi!Operation#MIN: return self.min();
43 case kpi!Operation#MAX: return self.max();
44 case kpi!Operation#DIV: return

self.get(0)/self.get(1);
45 case kpi!Operation#MULT: return

self.get(0)*self.get(1);
46 case kpi!Operation#CEN: if(self.get(0) >=

100000) return self.get(0) / 100000;
else return 1;

47 default : "No operation provided
".println(); }

48 }

Listing 3 Snippet of the EOL KPI provider.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

MIKADO: a smart city KPIs assessment modeling framework 291

3.5 Visualizing the evaluated KPIs model

This component is based on Picto [27], an Eclipse view for
visualizing models via model-to-text (M2T) transformation
to SVG/HTML. Briefly, in Picto, rule-based model-to-text
transformations expressed in the Epsilon Generation Lan-
guage (EGL) [28], anM2T transformation language, are used
to transform models into hierarchically organized read-only
graphical views, which are then rendered in an embedded
Web browser. Views belong to a range of formats, such
as SVG, HTML, PlantUML and Graphviz. Picto supports
advanced features such as lazy view computation, layers,
and composite views.

In our case, the views are generated based on three
concepts, i.e., the overall KPIs model, dimensions and cat-
egories, and the graphical view generation is implemented
in three EGL templates, i.e., KPIModel2Picto, Dimen-
sions2Picto,Categories2Picto. These three templates gener-
ateHTML/Javascript codeusing theChart.js library to render
the charts of the indicators results.7 The templates correspond
to the different views. In particular, the first one is the gen-
eral view for all the KPIs declared in the model, then a view
is dedicated to each dimension, and one for each category.
What differs in between the three generated views is the level
of nesting of the KPIs granularity, which in turn affects the
way of navigating the KPIs. What is interesting is the dif-
ferent ways to represent KPIs in the graphical charts, which
depend on both the KPIs value types and the actualized val-
ues returned by the assessment. For instance, examples can
be:

– gauges (cf. left hand side of Fig. 5) are used to represent
those KPIs calculated with an aggregation of real num-
bers, such as MIN, MAX, AVG, etc., as defined by the
enumeration OPERATION in the KPIs Metamodel;

– ranges (cf. right hand side of Fig. 5) are used to repre-
sent those KPIs whose value belongs to a given range.
The corresponding chart shows a label for each range
options, where the one resulting from the assessment is
highlighted;

– progress bars are used to represent KPIs of type integer;
– two buttons are used to represent Boolean KPIs with the
one resulting from the assessment selected;

– radar charts are useful for comparingKPIswith the same
numerical scale.

In the demonstration case discussed in Sect. 4, we report the
dashboard for one of the evaluated smart cities (cf. Figs. 9
and 10).

Listing 4 reports a snippet of the code generator for creat-
ing the gauge. For each KPI whose return value is a real and

7 https://www.chartjs.org/.

Fig. 5 Example of gauge and range charts

has a target value defined (as specified in the KPIs Meta-
model in Fig. 4), it generates the needed Javascript code.
Lines 12–19 set both the target value, e.g., the 100% value
w.r.t. the KPI definition, and the value for the gauge indica-
tor in percentage w.r.t. the target value. Lines 4–10 initializes
the gauge graphs, with the options defined in lines 12–19. As
can be seen from lines 21–22 for the other types of KPIs
different code is generated. Moreover, the template may be
customized in order to generate other types of representa-
tions. For instance, we are planning for future work to use
radar charts to give an global overview of KPIs belonging to
the same dimension or category.

Listing 4 Snippet of the EGL script for generating gauge chart.
1 . . .
2 [%
3 var i=0;
4 for (kpi in category . kpi . flatten ()) { %]
5 [%i f (kpi . value .getValue() . isTypeOf(Real) and

kpi . value . getTargetValue() . isDefined ()){%]
6 i f ($(’#chart_gauge_[%=i%]’) . length) {
7 var chart_gauge_[%=i%]_elem =

document.getElementById(’chart_gauge_[%=i%]’) ;
8 var chart_gauge_[%=i%] = new Gauge(chart_gauge_[%=i%]_elem) .
9 setOptions(chart_gauge_settings) ;
10 }
11
12 i f ($(’#gauge−text−[%=i%]’) . length) {
13 chart_gauge_[%=i%].maxValue = 100;
14 chart_gauge_[%=i%].animationSpeed = 32;
15 chart_gauge_[%=i%].set([%=kpi . value .
16 getValue()∗100/kpi . value . getTargetValue()%]);
17 chart_gauge_[%=i%].setTextField (document.
18 getElementById(’gauge−text−[%=i%]’)) ;
19 }
20 [
21 else i f (kpi . value . valuetype . isTypeOf(AggregatedRangedValue)) { . . .}
22 else i f (kpi . value . valuetype . isTypeOf(BoolValue)) { . . .}
23 i++;
24 }
25 %

4 DemonstratingMIKADO

In this section, we present a demonstration case in order to
show an instantiation of the presented framework and how
real-world KPIs are modeled and assessed on top of one or

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

292 M. De Sanctis et al.

more smart cities. The goal of this demonstration is to show
the feasibility of the proposed methodology, the expressive-
ness of the specified DSL for KPIs modeling, and how the
framework supports the comparison among multiple smart
cities. In the following, we introduce a selected set of real-
world KPIs which are subsequently modeled, computed, and
visualized by MIKADO. Furthermore, we also show how
MIKADO can support the comparison and evolution of KPIs
for different cities.

4.1 Selected real-world KPIs

In order to demonstrate the expressiveness of the proposed
KPIs DSL, we selected existing KPIs from multiple sources,
specifically those reported in Table 2. We selected these
sources because of the heterogeneity and completeness of
the defined KPIs. In particular, ITU [6] and CITYkeys [7]
are two projects specifically targeting the definition of smart
cities KPIs. ITU defined 91 indicators for smart cities where
each KPI has been selected throughout a review process by
international experts, to capture the performance of a city
in multiple dimensions. CITYkeys has been funded by the
European Union HORIZON 2020 program. It has been exe-
cuted with the involvement of multiple cities aiming for
KPIs and data collection procedures definitions for com-
mon and transparent monitoring, and in addition, it targeted
the comparability of smart city solutions across European
cities [7]. DigitalAQ [8], instead, is an EU project, involving
both public authorities and academia, aiming to help cities
achieve sustainable economic growth through the integration
of advanced technologies. It has been carried out in the city
of L’Aquila (Italy) and, among other things, it also targeted
the KPIs evaluation over the city.

In Table 2, we report the KPIs that we selected for
our application example. In particular, we selected KPIs
spanning across different dimensions, i.e., environment,
infrastructure, transport, and requiring diverse calculations
to be measured, to guarantee a wider coverage of the KPIs
complexity.Moreover, the diverse sources use different ways
to classify the KPIs. For instance, in ITU and DigitalAQ,
KPIs are hierarchically classified in dimensions (e.g., Econ-
omy, Environment, and Society and Culture) that, in turn,
contain multiple sub-dimensions. ITU further structures
sub-dimensions in multiple categories. CITYkeys, instead,
organizes KPIs in themes containing sub-themes. Eventu-
ally, each source shows a hierarchical KPIs organization,
even though using a different terminology. This aspect has
been taken into account when defining the KPIs Metamodel
that is abstract enough to model KPIs coming from different
sources.

In the following, we describe every KPI w.r.t. its dimen-
sion and calculations.We start by the ITU provided KPIs [6].
We can notice that the different KPIs sources show some

overlaps, as expected. Indeed, the Green Areas and Bicycle
Network KPIs are reported by both the ITU and CITYkeys
sources. The KPI Green Areas (GA) measures the green
area in the city per 100.000 inhabitants [6]. It belongs to
the dimensionEnvironment, sub-dimensionEnvironment and
category Public Spaces & Nature. It is calculated as in (1),
taking in input two parameters, i.e., the total area of green
space in the city in hectares and the city’s population.

GA = TotalGreenArea
1

100000 × CityPop
(1)

The KPI Bicycle Network (BN) measures the length of bicy-
cle paths per 100.000 inhabitants [6]. Its calculation is similar
to the one defined in (1) except that in this case we take into
consideration the total length of bicycle paths in the city.
This KPI belongs to the dimension Economy, sub-dimension
Infrastructure and category Transport.

BN = BikePathLength
1

100000 × CityPop
(2)

The KPI Air Pollution (AP) measures the air quality based
on the values reported for specific pollutants [6]. It is part
of the dimension Environment, sub-dimension Environment
and category Air Quality. The Air Pollution is based on the
Air Quality Index (AQI) KPI for specific pollutants, such
as particulate matter (PM), nitrogen dioxide (NO2), sulfur
dioxide (SO2) and ozone (O3). Usually, the AQI is calcu-
lated as in (3), where p refers to the pollutant, whereas the
legal limit is established by the law:8

AQIp = measured concentrationp
legal limit

× 100 (3)

The worst AQIp determines the Air Pollution KPI, as in
formula (4):

AP = max(AQIPM2.5, AQIPM10, AQINO2 , AQISO2 , AQIO3)

(4)

Both AQIp and AP are measured as µg/m3 and evalu-
ated w.r.t. five evaluation classes defined by the thresholds
described in (5).

I ndex evaluation class

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Excellent if I ndex < 30

Good if I ndex ≥ 30 ∧ I ndex < 66

Discrete if I ndex ≥ 66 ∧ I ndex < 99

Bad if I ndex ≥ 99 ∧ I ndex < 150

T errible if I ndex ≥ 150

(5)

8 http://apollon-project.it/2019/12/10/indice-di-qualita-dellaria-iqa/.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

MIKADO: a smart city KPIs assessment modeling framework 293

Table 2 Sources of the KPIs
definition used in the
experiment

KPI ITU [6] CITYkeys [7] DigitalAQ [8]

Green Areas � �
Bicycle network � �
Air Pollution �
NO2 emissions �
PM2.5 emissions �
Real-time transport monitoring �
of mobile applications �

The following two KPIs belong to the CITYkeys source [7],
as indicated in Table 2, and are thus structured in themes and
sub-themes.We selected theNO2 emissions andPM2.5 emis-
sions KPIs [7]. Both of them belong to the theme Planet and
sub-theme Pollution &Waste and take as input the emissions
of the corresponding pollutant p and the city’s population:

Emissionsp = p

CityPop
(6)

Eventually, from the DigitalAQ source [8], we selected the
following KPIs. The real-time transport monitoring (TM)
refers to the (un)availability of real-time transportmonitoring
systems in the candidate city [8]; thus, it can be represented
by aBooleanvalue. It belongs to the dimension Infrastructure
and sub-dimension Digital Infrastructure.

Number of mobile applications (MA) indicates the num-
ber of mobile applications available in the city (e.g., food
delivery, car sharing) [8], and it is obtained by collecting
mobile applications information from different stores. The
KPI belongs to the dimension digital competencies which is
a sub-dimension of competencies.

4.2 KPIs definition and smart city models

In the following, we describe both the KPIs model and smart
city model artifacts and then show how the evaluation engine
performs the KPIs measurement, by analyzing the provided
evaluated KPIs model. In this demonstration, we use the
smart city case of L’Aquila (Italy) as subject. L’Aquila is
an highly dynamic city due to the post-seismic reconstruc-
tion process still in progress. Applying our KPIs assessment
approach in this context should represent a meaningful test
case for evaluating our methodology, due to the continuous
evolving nature of the city that should be captured by the
calculated KPIs.

KPIs Definition Model After the KPIs selection, we defined
our KPIs model based on their definition and formulae. This
model defines the KPIs described above. We show here a
snippet of the textual notation for the definition of a single
KPI in Listing 5. In the Listing 1 inAppendix A, we report the
definition of the other KPIs used in this demonstration case
with the textual notation, since it makes the model easier to
read and understand.We can see for everyKPI the declaration
of its Dimension and Category, as defined in the KPIs Meta-
model (see Fig. 4). To give an overview on how KPIs can be
modeledwith the providedDSL,we describe howwe defined
the air pollution (AP) KPI in Listing 5, lines 5–50. We focus
on the AP KPI since it shows more complex calculations,
whereas we leave the interpretation of the remaining sim-
pler KPIs in the Appendix A as an exercise for the interested
reader. TheAPKPIbelongs to theAirQuality category,whose
definition starts at line 4. In Lines 5–50, instead, the calcula-
tion of AP is defined as in formula (4), which in turn depends
on the formula (3). For each input parameter required for the
AP evaluation, i.e., the measured concentration of PM2.5,
PM10, NO2, SO2 and O3, we calculate the percentage of
their concentration in the air w.r.t. their legal limits, as for
instance done in lines 8–14 for the PM2.5 pollutant. In par-
ticular, given the pollutant measured concentration (line 11),
it has to be divided (DIV operator at line 10) by its legal
limit (modeled as StaticRealValue at line 12) and the result-
ing value is multiplied (MULT operator at line 8) for the
StaticRealValue of 100. Then, the maximum value among
those obtained for the measured pollutants is selected, by the
MAX operator (line 7). Eventually, the AP KPI is evaluated
against a ranged value modeled at lines 44–48 and corre-
sponding to those in formula 5. The reported operators (e.g.,
GET, MULT, DIV, MAX in the Listing) are those defined by
the enumeration Operation of the KPIsMetamodel in Fig. 4.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

294 M. De Sanctis et al.

Listing 5 Air Quality KPI definition model shown in textual concrete
syntax.

1 KPIModel mykpi;
2
3 Dimension Environment{
4 Category AirQuality{
5 KPI AP{
6 values: AggregatedRangedValue: GET{
7 values: AggregatedRealValue: MAX{
8 AggregatedRealValue: MULT{
9 StaticRealValue: 100.0

10 AggregatedRealValue: DIV{
11 RealValue: PM2.5,
12 StaticRealValue: 25.0
13 }
14 }
15 AggregatedRealValue: MULT{
16 StaticRealValue: 100.0
17 AggregatedRealValue: DIV{
18 RealValue: PM10 ,
19 StaticRealValue: 50.0
20 }
21 }
22 AggregatedRealValue: MULT{
23 StaticRealValue: 100.0
24 AggregatedRealValue: DIV{
25 RealValue: NO2 ,
26 StaticRealValue: 200.0
27 }
28 }
29 AggregatedRealValue: MULT{
30 StaticRealValue: 100.0
31 AggregatedRealValue: DIV{
32 RealValue: O3,
33 StaticRealValue: 180.0
34 }
35 }
36 AggregatedRealValue: MULT{
37 StaticRealValue: 100.0
38 AggregatedRealValue: DIV{
39 RealValue: SO2
40 StaticRealValue: 350.0
41 }
42 }
43 }
44 Range "Excellent" min :[0.0

max :]30.0 ,
45 Range "Good" min :[30.0 max :]66.0 ,
46 Range "Discrete" min :[66.0

max :]99.0 ,
47 Range "Bad" min :[99.0 max :]150.0 ,
48 Range "Terrible" min :[150.00
49 }
50 }
51 }
52 }

Smart City Model At this point, the only missing artifact
for enabling the KPIs assessment is a SmartCityModel. In
Fig. 6, a portion of the graphical representation of the model
of the city of L’Aquila is shown. It has been created with
the graphical editor presented in [18]. In particular, the focus
of the model is on the DataAnalytics package that models
all the data collected from the corresponding providers and
required to calculate the KPIs modeled above. This repre-
sentation allows us to design the DataPackages instances,
namely AirMonitoring, CityStatistics, BikePaths, GreenAr-

eas, TransportMonitoring andMobileApplication, and their
providers as instances of Stakeholders and OpenData. In
particular, the Web service BreezoMeter gives live air pollu-
tion,9 pollen, and fires information of a selected geographical
area. Thus, here it is the provider of the real data compos-
ing the AirMonitoring data package (i.e., PM2.5, PM10, O3,
NO2, SO2, CO2). Instead, the CityCouncil stakeholder pro-
vides information about the geographical extension of the
city of L’Aquila (i.e., CityExt entity) and its total popula-
tion (i.e., CityPop entity), participating in the CityStatistics
data package. The open data instance PisteCiclabili.com
provides the Italian bike paths at the provincial and munic-
ipal levels,10 thus the data composing the data package
BikePaths (i.e., BikePathLength). Regarding the informa-
tion about the green areas, we gain the TotalGreenArea data
by the service Atlante Statistico dei Comuni designed here
as an instance of open data.11 The data about RealTime-
TransportMonitoring is modeled in a data package called
TransportMonitoring. The provider of this information is the
stakeholder instance GSSI since it is the institute in charge
of developing real-time transport monitoring systems and
technologies.12 Eventually, the data package MobileAppli-
cations contains the data MobileApplicationPS, that is the
number of mobile applications provided by the GooglePlay-
Store.13

4.3 KPIs assessment through the evaluation engine

The SmartCityModel and theKPIModeldescribed above con-
stitute the input for the KPIs evaluation engine (see Fig. 2).
A screenshot of the corresponding artifacts with their views
are reported in Fig. 7. On the left side, there is the SmartC-
ityModel that, in our scenario, models the smart city of
L’Aquila. On the central panel, the KPIs model is shown,
reflecting the AP KPI definition. Every element in the KPIs
model tree owns its corresponding properties as shown in the
property view displayed in the top-right panel. The aggre-
gated value defined in the KPIs model (corresponding to line
6 of Listing 5) and measuring the AP KPI is actualized with
the calculated value when the evaluation engine is executed.
This is shown in the bottom-right side panel, which shows
the property view after the execution. In the console as shown
in Fig. 8, the results of the KPIs assessment for the city of
L’Aquila are reported.

The output of the evaluation is proposed in two views, the
console and the actualized quality model, containing all the
calculated evaluations. The former supports a fast feedback

9 https://breezometer.com/.
10 https://www.piste-ciclabili.com/.
11 http://asc.istat.it/.
12 https://www.gssi.it/.
13 https://play.google.com/store/apps?gl=it.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

MIKADO: a smart city KPIs assessment modeling framework 295

Fig. 6 Graphical
Representation of the smart city
model for the city of L’Aquila

Fig. 7 Examples of the input and output models during the assessment process

and debugging process. The latter can be further processed
in order to enable other activities. To this end, the actualized
model resulting from the evaluation may be easily translated
into data interchange formats, e.g., XML or JSON, in order
to enable other applications to interact with it.

4.4 KPIs visualization through dashboards
generation

In Fig. 7, we can notice that in order to understand how the
indicators have been actualized and which are the values for

the subject smart city, we need to navigate the model looking
for the value instantiated for a KPI. This operation is quite
counter-intuitive for humans and requires an understanding
of EMF’s tree-based editor in order to inspect the model
and collect the KPIs results for the subject smart city. For
this reason, we provide another component (see Sect. 3.5)
offering visualization support for the KPIs models which
is fully integrated in MIKADO. Thus, the stakeholders can
directly have an intuitive and user-friendly visualization of
the KPIs’ evaluation. A video demonstration of the tool is
available at https://bit.ly/models-tool-kpi.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

296 M. De Sanctis et al.

Fig. 8 KPIs Assessment Results over the Smart City of L’Aquila

What we are able to produce with this component is set of
views for the KPIs model under inspection. For instance,
Fig. 9 shows the KPIs dashboard generated for the KPIs
model elaborated for the city of L’Aquila, evaluated w.r.t.
the KPIs model of which we showed a snippet in Listings 5.

When we inspect the KPIs model (cf. in Fig. 9), the
view on the bottom (cf. in Fig. 9) is automatically popu-
lated with multiple views. It shows all the KPIs elaborated
for this city and the results w.r.t. the target value set in the
model. We can see from the KPIs model that we declared
KPIs in different dimensions and categories. All the KPIs
are summarized in this view and for each KPI a separate
view is also generated. On the left side of Fig. 9, a naviga-
tor view (cf. in Fig. 9) is generated by Picto, showing all
the dimensions, sub-dimensions and categories of the KPIs
model. By selecting one of them, a dedicated view populated
with the contained KPIs and corresponding results is shown.
For instance, Fig. 10 reports the two KPIs belonging to the
dimension planet and category pollution and waste. Two
indicators are displayed, namely NO2 (nitrogen dioxide) and
PM2.5 (particulate matter) emissions with their correspond-
ing values reported as percentage w.r.t. their target values
specified in the KPIs model and corresponding to 100% in
the gauges dashboards. These indicators are also quantified
with units, specified in the KPI model (see Fig. 4).

4.5 Supporting smart cities comparison

In addition to the evaluation of a single smart city to demon-
strate the feasibility of the approach, we further modeled
two other Italian medium-sized cities, namely Bolzano and
Matera. By this, we aim to show that evaluating different
citieswith our approachwill also enable a comparison among
them. In particular, in Table 3, we report the KPIs assess-

ments for the three selected cities. From the results in the
table, we can observe that, concerning the KPI Green Areas
(GA), Matera surpasses the other cities by far because of
the presence of wide historical areas. We can see also the
results for the Bicycle Network (BN) KPI measured in kilo-
meters per 100.000 inhabitants. The cities of L’Aquila and
Matera obtained results much lower than the one obtained
by Bolzano. As it concerns the Air Pollution (AP) KPI, all
the three smart cities have been evaluated with the class
Good. For NO2 emissions and PM2.5 emissions, Bolzano
has the lowest values. Eventually, all the cities result to have
a real-time transport monitoring (TM) system while, as it
concerns the number of mobile applications (MA), Bolzano
shows the highest number.
To conclude, we highlighted here that both the Smart City
Metamodel and the KPIs Metamodel are designed to allow
smart city designers and KPIs experts to model several rele-
vant concepts, besides the ones we used in our demonstration
scenario. They support customization of both smart cities and
KPIs, and eventually, they can be extended with further con-
cepts, if required by the domain experts.

4.6 Supporting evolutionary KPIs

Defining general and high-level KPIs is useful to make
cities comparable and to rank them. However, based on their
dimension (e.g., geographical extent, number of inhabitants),
stage of economic development, population growth, etc., dif-
ferent smart cities may select appropriate KPIs among those
available or discard those KPIs which are not significant for
the given city. For instance, as a trivial example, the shared
bicycles KPI measures the number of shared bicycles per
100,000 inhabitants. Its calculation might be irrelevant to
those cities whose mobility infrastructure does not support
shared bicycles services.

The given modeling approach allows designers to select
relevant KPIs for the candidate smart cities, thus to enable
a customization of the measured KPIs. This can be done
through a dedicated editor as envisioned in [17], where we
planned a KPIs Fragment Selection/Customization Editor.
This editor will allow users to “query” the KPIs definition
model to select and possibly customize given KPI definitions
and generate model fragments [29].

A modeled smart city can evolve over time. For instance,
when the source of a particular data point changes, we have
to update the smart city model. Smart city changes can be of
different types and, in this case, theymight require more than
one modeling step. This is due to the fact that a change in
the smart city model may affect the KPIs definition model.
Changes that can be performed on the smart cities models
can be grouped into three categories [30,31]:

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

MIKADO: a smart city KPIs assessment modeling framework 297

Fig. 9 Overall View of the KPIs for the city of L’Aquila

Fig. 10 Detailed view of a single category of KPI

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

298 M. De Sanctis et al.

Table 3 Evaluation and
comparison of the subject smart
cities

Subject cities

KPI L ′Aquila Bolzano Matera

GA 48.72 ha/100.000 inh. 176.26 ha/100.000 inh. 982.74 ha/100.000 inh.

BN 86.0 km/100.000 inh. 307.15 km/100.000 inh. 66.0 km/100.000 inh.

AP Good Good Good

NO2 0.00008 µg/m3 0.00002 µg/m3 0.00004 µg/m3

PM2.5 0.00016 µg/m3 0.00014 µg/m3 0.00023 µg/m3

TM YES YES YES

MA 13 34 21

– Additive changes adding new modeling concepts related
to smart cities does not impact existing KPIs definition
models. New data providers can be defined in the smart
citymodel,with the effect that theywill be available in the
KPIs definition as parameters. New stakeholders as well
as new data points may be defined which subsequently
will be referable by the shown tracing mechanism.

– Subtractive changes Removing concepts from the smart
city model may impact the KPIs definition models. For
instance, removing a data provider affects the KPI def-
inition if a parameter is referring to the removed data
package.

– Structural changes A typical example is when the name
of the parameter used in the KPIs definition model is
changed in the smart city model.

Subtractive and structural changes impact the entire process
since a static analysis is required in order to check if all the
parameters used in the KPIs definition models are defined
in the smart city model. This can be realized with validation
rules, e.g., checking that a renaming operation performed on
the smart city model does not affect the KPI definitions.

Concerning KPIs evolution over time, our approach also
supports the modification, and thus, the evolution of KPIs
definitions. By exploiting the relationship between the Smart
City andKPIsMetamodels, we have a clear contract between
them: the parameters defined in the KPIs model should be
compatible with the name, type, and unit of the data sources
defined in the smart city model. Thanks to the separation
of concerns implemented by the approach, the KPIs defini-
tion is organized in sort of libraries where the modeler or
KPIs expert defines how the smart city parameters can be
composed to calculate the requiredmetrics. Thismechanism,
supported by the textual editor, injects the textual definition
into a model that will be used by the engine. Being a model,
as any other structured model, it can be queried to select
or deselect the needed fragment, implementing the selection
mechanism explained above. In particular, also KPIs evolu-
tion can essentially be of the same categories as explained
before for the smart city models whose implementation can

be realized via a few modeling steps on the KPIs definition
model:

– Additive changes the rise of a new interesting KPI for
the city is the typical example. When designers need to
add the calculation of a new KPI, they can have two
situations to deal with, i.e., the new KPI belongs to an
existing dimension and category or the new KPI takes
with it a new dimension and/or category. In the first case,
designers have to model the KPI calculation in the cor-
responding dimension and category. In the second case,
besides the KPI calculation, designers have to model the
new dimension and/or category. Both situations require
modeling operations only in the KPIs definition model.
For instance, cities that had no cycling infrastructure at
the time of their development, at a certain stage of their
evolutionmay be interested in the calculation of the bicy-
cle network KPI, previously mentioned in this paper, that
before would have not been meaningful.

– Subtractive changes a typical example is the deletion
of an obsolete KPI. When it is no longer interesting to
calculate a KPI on a city, it is only required to delete
the KPI calculation in the KPIs definition model. For
instance, looking at the KPIs taken into consideration in
our demonstration case, for the pollutant PM2.5 we cal-
culate an ad hoc KPI called PM2.5 emissions (see lines
47–52 in Listing 1 in Appendix A) and also the air quality
index AQI for the same pollutant (see lines 8–14 in List-
ing 5). This information could be redundant, thus some
stakeholder may think of removing the PM2.5 emissions
calculation from the KPIs definition model to save space
and time for the KPIs assessment.

– Structural changes the modification of a KPI calculation
logic is the typical case here. Evolution may refer to the
calculations used to measure existing KPIs. For instance,
the ranges for the air pollution evaluation already changed
in the past, as described in the WHO air quality guide-
lines.14 Specifically, in 2015, the recommended limits for

14 https://bit.ly/3dVT83X.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

MIKADO: a smart city KPIs assessment modeling framework 299

the O3 changed due to the correlation between dailymor-
tality and lower ozone concentration. Further evolution
steps may be expected for the future. In our demonstra-
tion case, the designers may promptly handle the change
at line 33 of Listing 5. Moreover, let us think about the
network coverage KPI. After the advent of 5G, the calcu-
lation for this KPI evolved, by including the 5G network
coverage. This kind of evolution can be easily handled
with our approach, by acting on the declaration of the
KPI in the model.

The proposed approach is interpreter-based, thus supporting
dynamic changes as they will be immediately reflected in the
evaluation process [32]. Most of the traditional approaches,
as afore discussed in Sect. 2, might need to re-implement and
re-deploy the existing platforms depending on the performed
evolution.

Coordinating and supporting evolutionary changes to both
model types may be implemented with validation rules
checking. This feature may be easily integrated in our
approach by applying EVL [33] rules, checking if the above
identified constraints are fulfilled, and in case they are not,
resolutions can be performed with (semi-)automatic model
repair rules. EVL indeed provides quick fixes aswell as alerts
that may guide and instruct the modelers during the resolu-
tion process.

In conclusion, our approach canmanage dynamic changes
based on the interpreter strategy. Moreover, a (semi-)
automated mechanism will enable the co-evolution of both
smart cities and KPIs models which is left as subject for
future work. In particular, co-evolution may be supported by
checking the refersTo relationship between the smart city
model and the KPIs model (see Fig. 2), similar as it is done
for the conformsTo relationship between models and meta-
models [34].

5 EvaluatingMIKADO

In this section, we provide an evaluation of our approach
which is twofold: (i) we evaluate the scalability of the eval-
uation engine in managing smart cities and KPIs models
of increasing size, and (i i), we assess the usability and
understandability of the presented approach, especially w.r.t.
spreadsheet-based approaches.

5.1 Scalability of MIKADO’s evaluation engine

The purpose of this evaluation is to study the scalability of
the approach with an increasing size of smart city models
and number of KPIs. Indeed, we recall here that the SmartC-
ityModel allows for the modeling of multiple smart cities
at a time, thus to simultaneously evaluate them (e.g., to

enable a comparison among smart cities, as done by ranking
agencies). This means that the size of the SmartCityModel,
together with the number of computations to evaluate the
selectedKPIs, can rapidly increase. For this reason,we aim to
guarantee the effectiveness of the KPIs assessment approach
when applied over multiple and complex smart cities to mea-
sure hundreds of KPIs.

5.1.1 Research question

We aim to answer the following research question (RQ).

RQ Is the proposed assessment framework, in particular, the
evaluation engine, scalable in terms of execution time?
To answer this research question, we performed an experi-
ment that falls in the area of performance evaluation of MDE
artifacts [35], as our interpreter of the proposed modeling
language can be considered as a kind of model transforma-
tion as described in the following. In particular, we run the
experiment for replying to this research question with mea-
surement of the execution time of the evaluation phase only.
This means, in this experiment, the input models are ready
for the evaluation and the modeling phase is considered as
finalized, i.e., all themodel elements have been automatically
or manually filled. All the artifacts used in the experiments
are available on github.15

5.1.2 Experiment setup

Scenarios. The goal of our experiments is that of checking
the evaluation engine execution time w.r.t. the size of the
input models, i.e., the number of elements in the models. In
our case, the input models are twofold. Thus, we designed
a smart city model, in which we instantiated every concept
of the metamodel, and a KPIs model. In particular, the used
KPIs model is initially made by one dimension with one
category of 8 KPIs, thus to cover all the calculations defined
in the KPIs Metamodel.

In particular, we designed 4 increasingly complex sce-
narios, whose settings are reported in Table 4. In Exp1, for
each execution run of the evaluation engine,we increment the
number ofmodeled smart cities (SCs) in the smart citymodel
from 1 to 10 and we measure the 8 KPIs in the KPIs model
for each of them. The size of the 2 input models, given by the
sum of the smart city elements and the KPIs elements, goes
from 200 (at the first run) to 632 (at the tenth run). In Exp2,
we increased the complexity of the used KPIs operations, by
adding new nested operations in every KPI. An example of a
nested operation is reported in Listing 5, lines 8–14, where a
DIV operator is nested into aMULT operator. Adding nested

15 https://github.com/gssi/SmartCityModeling/blob/master/
reproduction_package.zip.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

300 M. De Sanctis et al.

operations does not mean havingmore complex calculations.
It might rather impact scalability for two main reasons: (i) it
leads to an increase of the KPIs model size, and (i i) it leads
to an increase of the KPIs model’s depth that, in turn, may
impact the KPIs model navigation time. This way, the size of
the KPIs model increases from 151 elements in Exp1 to 195
elements in Exp2. Then, as done for Exp1, we perform 10
runs measuring the new KPIs model on the smart city model
where the number of modeled smart cities increases by one
at each run. We designed Exp3 by adding to every KPI defi-
nition in the KPIs model a range calculation, since we know
from previous work [17] it is themost time consuming opera-
tion. An example of a range operation is reported in Listing 5,
lines 6–50, where the GET operator used to calculate the AP
KPI returns one of the ranged values defined from line 44
to line 48. This is due to the fact that AP is defined as an
aggregated ranged value. In these settings, the KPIs model
size further increases to 322 elements. Then, we perform 10
runs measuring the new KPIs model on the smart city model
defining from 1 to 10 smart cities. Eventually, in Exp4 we
increased the complexity of the KPIs model used in Exp3
by incrementing its dimensions in such a way to have a KPIs
model with 10 dimensions and 80 KPIs. Then, we repeated
10 runs with the new KPIs model of size 3211.

For the design of the described scenarios, we defined arti-
ficial models with the aim of instantiating all the entities
in the Smart City and KPIs Metamodels, thus to be sure of
(i) involving all the model elements in the execution runs,
comprising the most time consuming ones (i.e., nested oper-
ations in the KPIs model), and (i i) forcing the evaluation
engine to navigate complete smart city models (i.e., models
providing at least one instance for each metamodel entity).

Measurements. We executed the experiment by running
the evaluation engine using a 6 core CPU running at 2.2GHz,
with 16Gb memory. We run the evaluation engine on a
machine with Windows 10, inside an Eclipse IDE of ver-
sion 2020-06 (4.16) with Java 8, while the Epsilon version
used was the 2.1.0.202006301809. Differently from [17], for
this experimentation, the evaluation engine is launched mul-
tiple times from a Java program that loads and passes the
input models to the engine and stores the evaluated KPIs
model after the assessment. The execution time of the eval-
uation engine, reported in milliseconds (ms), is measured
from when it receives the input models to when it returns the
evaluated KPIsmodel (including themodel persistence oper-
ation). In particular, for each of the 4 experiments described
above, we performed 10 execution run, where each run has
been repeated 11 times.

5.1.3 Experiment results

In Fig. 11, we show the results of the 4 experiments in terms
of execution time. For each run of any of the experiments,

the chart reports the average among the times resulted from
the 11 executions. The complete measured execution times
are reported online and they show that,16 apart for the first
run when the input models are initially loaded, there have
been only minimal differences between the runs. This is also
supported by the caching feature of Epsilon, as discussed
later in this section.

In Fig. 11, the blue line represents the results of our first
experiment Exp1. The models size goes from 200 (49 SC
elements plus 151 KPI elements in Table 4) to 632 (481 SC
elements plus 151 KPI elements in Table 4) elements and
the execution time goes from 72 ms to 124 ms. The red line
reports the results of Exp2. We can observe that the execu-
tion time goes from 86 ms to 193 ms w.r.t. an increase of
the models size from 244 to 676 elements. The yellow line
reports the results of Exp3, showing that the execution time
ranges from 202 ms to 654 ms, by showing an increase w.r.t.
the previous two experiments, thus highlighting the complex-
ity of calculations due to the range operation. However, the
overall execution time is still reasonable for the givenmodels
size that goes from 371 to 803 elements. Eventually, in Exp4
(green line in Fig. 11) 10 dimensions made by 80 KPIs are
considered. This means that in the last execution we assessed
800 KPIs in the same run (80 KPIs over 10 smart cities). Fig-
ure 11 shows that the execution time ranges from 624 ms to
5015 ms, with the models size going from 3260 to 3692.

5.1.4 Answer to the research question

Summarizing, these experiments point out two main find-
ings. Firstly, the efficiency in terms of the evaluation engine’s
execution time, since all the experiments clearly show a
linear increase of the execution time w.r.t. the increasing
models size, without any peaks. Moreover, the computation
time reduced of 50% compared to the experiments reported
in [17]. This is due to relevant code refactoring performed
in the framework, namely the embedding of the EOL evalu-
ation engine in a Java program that manages the loading of
input models, the multiple runs of the evaluation engine, and
the persistence of the evaluated KPIs models resulting from
the assessments. Moreover, the infrastructure makes use of
the caching feature of Epsilon, which allows for loading on-
demand only the models that have been changed between
one run and another. Secondly, promising scalability results
are shown by Exp4, indicating that the system takes approxi-
mately 5 seconds for assessing 800KPIs over 10 smart cities.

From a qualitative perspective, we performed the follow-
ing observation. In Sect. 4, we modeled three real-world
medium-sized Italian cities, namely L’Aquila, Bolzano, and
Matera, to discuss how our approach supports comparison
among different cities. In average, the smart city model size

16 https://bit.ly/330iMzA.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

MIKADO: a smart city KPIs assessment modeling framework 301

Table 4 Increasingly complex
scenarios for the scalability
assessment

Scenario SCs SC elements KPIs KPIs elements Specific computation

EXP1 1–10 49–481 8 151 Single calculations

EXP2 1–10 49–481 8 195 Nested calculations

EXP3 1–10 49–481 8 322 Range calculations

EXP4 1–10 49–481 80 3211 Multiple KPIs dimensions

Fig. 11 Execution times of the
evaluation engine resulting from
the experiments

for these cities is equal to 80, while the size of the KPIs
model used for the comparison is 290 elements. Considering
that the smart city models size used in this experimentation is
slightly higher (i.e., 49–481 in Table 4), we claim that in our
framework we can easily compare 10 real-world medium-
sized cities w.r.t. 80 KPIs, where 80 can be considered a
valid upper bound, given that the average among the KPIs
defined by ITU, CITYkeys and DigitalAQ is 76. We leave
for future work the modeling and evaluation of metropolitan
cities.

5.1.5 Threats to validity

Our approach strictly depends on data about the smart cities
under evaluation. These data are needed for instantiating the
parameters required by the assessment process. If these data
are not open or providers are not making it available, we
can rely on the support of domain experts for the estima-
tion of these parameters for the smart cities under evaluation.
Incorrect estimates can lead to incorrect KPIsmeasurements.
However, the overall procedure implemented in the evalua-
tion engine is not affected, since KPIs calculations are based
on standard KPIs definitions, which are recognized by the
community. This unavoidable problem about the availability
of open data is an open issue in this domain that requires a
wider investigation about useful data sources to consolidate
the presented approach.

With these premises, the experimentation performed in
this work may be internally biased from the parameters we
used as input to calculate KPIs, which are realistic but not
real, in the sense that they are not related to specific cities.
More complex data might impact on the performance of the
approach, if leading to more time consuming calculations.
Moreover, also the time required to get this data in a real sce-
nario, e.g., via APIs calls, has not been part of the calculation
of the computation time. Lastly, in Exp2 we evaluated the
approach by adding a nested operation, i.e., the most time
consuming one, in every KPI. However, we considered only
one level of nesting even thoughwe cannot exclude that some
KPIs may require more nesting levels that might degrade the
performance for their calculation.

A threat to the external validity is that the results have
been obtained on a set of demonstration casesmodeled by us.
Indeed, we defined artificial models with the aim of instanti-
ating all the entities in the Smart City and KPIs Metamodels
and we are aware that this could also threaten the external
validity of our experiment.

To increase the representativeness of the input models to
our approach, more KPIs and smart cities experts should be
involved in a wider experimentation. This is due to the fact
that experts may customize existing KPIs and/or define new
ones, going beyond the standard KPIs that we consider as
representative, i.e., those reported by ITU and recognized
at European level. Moreover, we are aware that the appli-
cation of the approach to more complex smart cities (e.g.,

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

302 M. De Sanctis et al.

metropolitan cities) has not been performed. This would be
fundamental to evaluate the generality of the approach, by
applying it to cities which are distant in terms of dimension,
growth, richness, etc.We leave this point as part of our future
work.

5.2 Understandability of MIKADO’s DSLs

The purpose of this evaluation is to study the usability of the
presented approach. The main artefact the smart city domain
experts have to use in the presented approach is the DSL to
define the KPIs. As a first evaluation in this respect, we focus
on the perceived understandability of the DSL. We consider
understandability as a major building block for usability and
leave for this study tooling aspects aside and as subject to
future work. Specifically, as a future evaluation we aim to
exploit Technology Acceptance Models (TAM) [36] in order
to further measure the perceived ease-of-use and perceived
usefulness indexes of the defined DSLs and the tools mak-
ing MIKADO, so that to evaluate the user acceptance of our
approach.

5.2.1 Research question

Given the premises stated above, we aim to answer the fol-
lowing research question (RQ).

RQWhat is the perceived understandability of the proposed
KPIs DSL when investigated by smart city domain experts?

To answer this research question, we performed an expert
survey which is described in the following. All the artifacts
used in the survey as well as the anonymous results are avail-
able.17

5.2.2 Survey setup and execution

To reply to the stated RQ, the KPIs DSL has to be inves-
tigated and judged by different smart cities stakeholders.
To this end, we composed an online survey available at
https://forms.gle/dxidpC3z6XkvRpUo7 where we basically
show different KPIs expressed as within spreadsheets as
well as with our DSL. We used this setting since we
consider spreadsheets as a common approach used in the
KPIs evaluation domain. Furthermore, when reasoning about
understandability it is easier to evaluate in a survey by having
a relation to the state of the art.

For each KPI, we show its definition with both our DSL
and spreadsheet formula; thus, for each definition we ask to
describe what the defined formula computes with an open
answer question, and to rank, with a Likert scale (from 1 to
10), the understandability of the current definition.Moreover,

17 https://bit.ly/3kXIJ8x.

we ask through multiple choice questions with which of the
two approaches the user will be more confident to modify or
define new KPIs, considering a period of training of 1 week
or a training period of 10 weeks. Eventually, we ask, again
via multiple choice questions, what smart city representation
they preferred, between the graphical representation (as in
Fig.6) and the spreadsheets definition we implemented to
make the formulae working.

We submitted the survey to 10 smart cities and/or KPIs
experts. In order to involve an heterogeneous group of par-
ticipants with different perspectives and expertise about
smart cities and their evaluation, we contacted experts from:
(i) companies, such as employees of ITU; (i i) academia, via
two mailing lists of people involved in smart city projects,
e.g., the mailing list of the https://cs.gssi.it/summerschool/
2019 edition; (i i i) the smart city committee of the city of
L’Aquila,18 nominated by themajor andmade by smart cities
experts. Moreover, participants have not been trained about
the DSL, but they just received a brief introduction, while
we cannot exclude that they had background on the use of
spreadsheets, given their diffusion and popularity.

5.2.3 Survey results

In Fig. 12, the chart reports the votes given in the Likert
scales for each evaluated KPI (on the x-axis) w.r.t. the under-
standability of the two different formulae definitions. Here,
we can see that our DSL received better votes, apart for the
KPI mobile applications (MA). However, we can argue that
the MA KPI is easily calculated by summing up the number
of available mobile applications in the city, meaning that in
spreadsheets it does not require complex formulae, as in our
DSL. On the contrary, for all the other KPIs showing more
complex calculations, our DSL resulted to be more compre-
hensible, by looking at the results. The colored dots in the
chart in Fig. 12, instead, indicate the number of responses
of the type “I don’t know” to the question that was asking
to describe what the defined formula compute. We can see
that, differently from our DSL, for the spreadsheet formu-
lae we registered at least one “I don’t know” for every KPI
definition. Interestingly, for the transport monitoring (TM)
KPI that is simply measured with a Boolean value, the users
found it easy to understand the spreadsheet formula.

Moreover, Fig. 13 reports the results referring to the ques-
tions about the users preferences on using one between our
DSL and the formulae in the spreadsheet, or even none of
them, when considering a period of training of 1 week or 10
weeks. We can see that in the first case, Fig. 13 left side, the
40% of the users claim that they would like to use our DSL,
against a 20% of users preferring spreadsheets. A consid-
erable percentage, namely 30%, would be in favor of using

18 https://bit.ly/3xqKLFd.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

MIKADO: a smart city KPIs assessment modeling framework 303

Fig. 12 The boxplots report the
votes given in the Likert scales
for each evaluated KPI w.r.t. our
DSL and the spreadsheet
formulae. The dots indicate the
number of responses “I don’t
know” given for each KPI
description

Fig. 13 Users preferences between our DSL and spreadsheets when considering a period of training of 1 week (left side) and 10 weeks (right side)

both of them, indistinctly. Meanwhile, considering a period
of training of 10weeks, Fig. 13 right side, themajority (50%)
of the users claim thatwould use both theDSLand the spread-
sheets, indistinctly. The remaining 50% is more in favor of
our DSL (30%) than of the spreadsheets (20%).

Eventually, Fig. 14 reports the results about the users pref-
erences w.r.t. the two smart cities representations that we
provided, namely the graphical one used in our approach and
the tabular one as done in the spreadsheets. The results show
that 40% of them liked both representations, indistinctly.

5.2.4 Answer to the research question

From these preliminary results, it seems that our DSL is
perceived as more comprehensible w.r.t. spreadsheet-based
solutions particularly when considering KPIs models show-
ing more complex calculations. This in spite of the fact
that participants were certainly not aware of the DSL, while
they probably had basic knowledge about spreadsheets. That
being said and even though the spreadsheets-based solution

Fig. 14 Users preferences w.r.t. the two proposed smart city’s repre-
sentations, graphical vs. tabular

did also score well, we can state that complex spreadsheets
formulae are perceived more difficult to understand com-
pared to the DSL-based solutions. Moreover, as regards the

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

304 M. De Sanctis et al.

smart city model, if not too complex, it is easily compre-
hensible also when represented in a spreadsheet. From these
results,we can argue thatwith a short training period the users
seem to be more confident in using our DSL w.r.t. spread-
sheets.

5.2.5 Threats to validity

The preparation of the survey as discussed in Sect. 5.2.2 and
its usage to evaluate the understandability of our DSL may
represent a threat of construct validity. This is due to the fact
that the experts who participated in the survey may be biased
by our expectations that may unintentionally leak from the
questions. To overcome this problem, we previously submit-
ted the survey to senior colleagues in order to assess it in
terms of independence from our expectations. This resulted
in a number of iterations on the survey’s definition to address
the received feedback on the survey itself and to make it as
independent as possible from our expectations.

A threat to the external validity is given by the limited
number of participants to the survey. However, during the
selection process, we aimed to contact potential participants
with heterogeneous perspectives, i.e., business, academic,
and smart city experts, might mitigate the shortage of partic-
ipants. A second threat to the external validity follows from
the previous one and relates to the non-homogeneity of the
selected groups of participants, with different backgrounds,
that may be hard to compare. However, in this experiment,
especially as regards open-answer questions, we observed
quite concise and homogeneous answers, despite the diverse
backgrounds of participants. Moreover, none of the answers
were out of topic or indicating misunderstanding of the ques-
tions by the participants.

6 Related work

In this section, we discuss related work concerning the appli-
cation of MDE for Smart Cities as well as the application of
KPIs for Smart Cities. Furthermore, we also discuss related
approaches for quality assessment as well as for spreadsheet
engineering which may also find further application in the
field of smart cities.

6.1 MDE and smart cities

As already introduced, smart cities are actually consid-
ered systems of systems, made by different dimensions and
involving several stakeholders. These features make them so
complex to handle. The management of heterogeneous con-
texts and aspects has brought out the need of a high-level of
abstraction of the different processes happening in the con-
text of a smart city. MDE can be helpful, and it has been

already used in this domain. In [11], the authors present a
DSL to model Smart City Systems (SCSs). They face with
the high heterogeneity of services, devices, and communica-
tion protocols that can help in creating a SCS. They further
show that a well-defined DSL in a given domain can be
understandable also by experts with no knowledge in soft-
ware engineering. Instead, in [12] the author exploitsMDE to
tackle the issue of limited collaboration between the different
stakeholders in the smart city domain. The use of DSLs in
such contexts supports understandability and analysis com-
pared to general-purpose programming languages (GPLs)
source code patterns that are more complex and often not
well defined [37]. Indeed, the risk of using a GPL is to be
too abstract and to struggle in the development phase. For
these reasons, MDE-based tools and methods filling the gap
between the high-level abstraction of domain concepts and
the low-level abstraction of GPLs are proposed in [38], to
deal with complex systems, such as those of smart cities.

6.2 KPIs and smart cities

Besides the ITU report [6], there are also other attempts of
standardizing smart cities-related approaches and technolo-
gies. For instance, [13] mainly focuses on the development
of standard indicators to measure technical and economic
aspects for projects aimed at energy efficiency. Instead, in [7],
KPIs and data collection procedures are defined to promote
a transparent monitoring and comparability of smart cities
solutions across European cities. Moreover, [39] proposes a
methodology for the creation of a repository of all the pos-
sible KPIs for smart cities in order to support their selection
for the interested users. In [40], the authors highlight the fact
that to face smart cities evolution many organizations build
models to contain the different KPIs of interest. They aim to
overcome the difficulty in comparing different KPIs models
by developing a framework for the analysis of smart cities
models and by proposing a KPIs tree structure. In [41], the
authors present a high-level model for the design of KPIs. In
doing this they highlight the limitations in using KPIs and
the complexity of smart cities systems. Here, the focus is on
the use of KPIs in decision-making processes.

6.3 Quality assessment approaches

We already highlighted how quality assessment of smart
cities can be re-conducted to quality assessment in software
engineering. The quality of a software is important since it
may affect several aspects, such as human life and financial
loss. These two aspects, in particular, are relevant also in
the smart cities domain because a correct evaluation of KPIs
for a city can affect its improvement. As regards the quality
evaluation applied in software engineering (e.g., [42]), we
can find several quality models that present a hierarchical

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

MIKADO: a smart city KPIs assessment modeling framework 305

structure, as the KPIs metamodel we defined for our demon-
stration case (Fig. 4). In [43], one of themain issue in software
quality assessment is highlighted, i.e., the lack of standard-
ization in modeling software quality metrics. The motivation
relies in the variety of application scenarios. Similarly, a lack
of standardization in the modeling of KPIs and their calcu-
lation for different cities can be observed. Moreover, in the
MDEfield the quality assessment has to face another relevant
issue, such as the continuously evolution of languages [44].
Again, this aspect can be reflected in the KPIs assessment
for smart cities, due to the discussed KPIs evolution. In addi-
tion, while defining our approach, we experienced one of the
obstacle as in [45], typical in model-driven settings. More
precisely, we refer to the fact that quality models, such as our
KPIs Metamodel in Fig. 4, rely on partially defined subjects
since they model quality issues/metrics, instead of concrete
concepts/phenomena.

6.4 Spreadsheet engineering

Given the use of spreadsheets in the decision-making context
also previously highlighted in this work, we further survey
spreadsheets-based approaches that can potentially be used in
the performance assessment of smart cities. In industrial con-
texts, spreadsheets are widely exploited for decision-making
purposes [46]. In this work, the authors argue that the quality
of the used spreadsheets is very important because decisions
taken upon wrong spreadsheets-based assumption may have
serious economical impacts on businesses. This drawback
is further stated in [47], where the lack of rigorous quality
assurance mechanisms in the development of spreadsheets is
highlighted. In order to solve the problem, the authors present
an approach of Model-Based Diagnosis of faults in spread-
sheets. In [15], the goal of the authors is to reduce the known
error-proneness shown by spreadsheet-based approaches. In
this direction, they introduce a new way of object-oriented
modeling to generate and evolve spreadsheets before using
them. In particular, they make used of so-called ClassSheets,
namely object-oriented classes, used to generate concrete
spreadsheets as class instances in such a way to manage
and reduce sources of errors before the spreadsheets genera-
tion. Similarly, MDE techniques are exploited also in [48] to
build spreadsheets models easy to evolve and validate. These
works, besides confirming the drawbacks of spreadsheets as
already discussed in this work, highlight the potential of
using MDE techniques, as widely done in our approach,
already supporting model validation, error detection, code
generation and evolutionwithout the need of developing ded-
icated approaches to add these features to spreadsheets-based
frameworks.

7 Conclusion and future work

In this paper, we presented MIKADO, an approach for the
definition, automatic assessment, and visualization of KPIs
over smart cities. In particular, the approach provides dif-
ferent artifacts for modeling smart cities and KPIs as well
as an evaluation engine for the automatic KPIs calculation
and an engine to render their visualization. This engine is
also able to produce integrated KPI dashboards helpful in the
decision-making process, actuated by the stakeholders. This
work gives the complete realization of the overall approach
described in Fig. 2 and is open to further extensions and
improvements.

The goal of our approach is twofold: firstly, supporting
smart cities administrators in evaluating the degree of smart-
ness and sustainability, by providing them a global vision
over their managed city through the automated and cus-
tomized evaluation of KPIs they selected, and secondly, the
approach is generic, and thus, equally applicable to different
smart cities for theirKPIs assessment. This enables a compar-
ison among smart cities, as, for instance, periodically done
by ranking agencies, by even increasing the trustworthiness
of the approach. Understanding their city’s level of smartness
w.r.t. other cities may help administrators in understanding
what are current strengths and weaknesses. Moreover, the
round-trip nature of our approach, which goes from the KPIs
evaluation, to the results interpretation back to the smart cities
administrators, guarantees the stakeholders involvement and
alerting.

As the current approach already showed promising eval-
uation results, we present in the following interesting lines
for future work.

Smart Cities Comparison. Concerning the visualization
part, the generated dashboards can be used to enable com-
parisons between different smart cities. The use of intuitive
charts like those in Fig. 5 supports a fast and easy under-
standing of the indicators. For instance, by defining the same
set of KPIs against which to assess a set of smart cities, the
tool can be used to build smart cities rankings showing their
level of smartness.

KPIs Continuous Monitoring and Forecasting. The run-
time monitoring of KPIs is currently not handled by our
approach that instead computes preliminary KPIs evaluation
on the current status of smart cities only. However, we plan
to extend our approach such that it is triggered at real-time by
changing values in the KPIs input parameters, thus perform-
ing the KPIs evaluation periodically or in a reactive manner.
Open data APIs and exposed Web services can be used as
real-time sources. For instance, concerning our demonstra-
tion case, we plan to continuously inject model parameters
by requesting data from a publicly available repository, i.e.,

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

306 M. De Sanctis et al.

OpenData L’Aquila.19. Moreover, it might be that real-word
data required for the KPIs calculation is not available. When
this happens, estimated data can be used. As future work,
we are interested in investigating how to leverage both real-
world and estimated data to create forecast models that can
predict the expected KPIs of a smart city [49,50] and can
be used in combination with our approach, to increase its
accuracy.

Simulations and KPIs Interrelations. The smart city gov-
ernance system, besides using the proposed approach to
evaluate and make considerations about the calculated KPIs,
can also exploit modeling tools to generate predictive and
descriptive models of the city. This way, the infrastructure
canbe exploited also for simulation activities.Moreover, sim-
ulations may be performed also to investigate and evaluate
the impact of planned changes on the KPIs for the city. For
instance, if the mobility plan of the city includes the intro-
duction of a new transportation mode (e.g., shuttle buses
connecting peripheral areas), the city administrators might
be interested in simulating its impact on, i.e., the number
of private cars around the city. Moreover, a decrease in this
value would also affect the AP KPI defined in formula (4).
This leads to the analysis of KPIs interrelations, that is, in
our opinion, enabled by our approach and may be performed
through queries on the model artifacts we already provide.

Smart Cities and Digital Twins. Concerning simulation
activities, it could be interesting to exploit digital twin
approaches [51] in the smart city domain, due to their vision
of simulation as a tool for merging the physical world and
its virtual representation. On the one hand, making digital
twin technology an integral part of model-based software
engineering has been explored in [52]. On this basis, we
can think to exploit digital twins in our approach to perform
dynamic and real-time KPIs evaluation. On the other hand,
using model-driven engineering for developing digital twins
as described in [53] would allow to also exploit our models
for deriving digital twins.

Historical Smart Cities Models. The presented tool may
enable not only comparisons with other cities but also with
values related to different periods of time on the same city. In
this way, the stakeholders can reason about the trends of the
different KPIs calculated over the city. This could be further
supported, for instance, by integrating some existing tools to
support versioning of KPIsmodels, e.g., TemporalEMF [54],
in order to monitor the evolving indicators. Of course, since
there is synchronization between the instantiatedKPIsmodel
and the dashboards view, the consequences of a change of
a KPI value in the model can be immediately seen in the
dashboard. This means that the tool can be used also to make
simulations by changing the calculated KPIs values of the

19 http://opendatalaquila.it

candidate city, supporting stakeholders in making assump-
tions during decision-making processes.

Modeling and Reasoning on Decisions. Moreover, the
presented approach implicitly supports the decision-making
process, by providing KPIs value describing the city that can
be exploited by smart city managers to reason about deci-
sions to be taken. It would be interesting for future work to
explicitly relate KPIs to decisions, as for instance done for
software systems and architectures [55,56].

Further empirical studies. Further efforts will aim to
model the complete list of KPIs provided by the standard
guidelines we refer to (i.e., [6–8]). We also plan to evaluate
the approach over a larger number of smart cities of differ-
ent sizes in order to verify its accuracy. Finally, we plan to
exploit Technology Acceptance Models (TAM) to evaluate
the usability of our approach not only in terms of perceived
understandability but also including the perceived ease-of-
use and usefulness of the defined languages and tools.

Acknowledgements Wewant to thankDimitris Kolovos, from theUni-
versity of York (UK), for giving support for technical aspects of this
project. This work was partially supported by the Centre for Urban
Informatics and Modelling (CUIM) and the PON (Programma Opera-
tivoNazionale Ricerca e Innovazione), AIM1880573Cultural Heritage,
National Projects atGSSI aswell as by theAustrian FederalMinistry for
Digital andEconomicAffairs and theNational Foundation forResearch,
Technology and Development (CDG).

Funding Open access funding provided byGran Sasso Science Institute
- GSSI within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: snippet of the KPIs definition
model with textual concrete syntax

1 KPIModel mykpi;
2
3 Dimension Environment{
4 Category Public Spaces & Nature{
5 KPI GA{
6 values: AggregatedRealValue: DIV{
7 RealValue: TotalGreenArea
8 AggregatedRealValue: CEN{
9 RealValue: CityPop
10 }
11 }

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

MIKADO: a smart city KPIs assessment modeling framework 307

12 }
13 }
14 }
15
16 Dimension Economy{
17 Dimension Infrastructure{
18 Category Transport{
19 KPI BN{
20 values: AggregatedRealValue: DIV{
21 RealValue: BykePathLength
22 AggregatedRealValue: CEN{
23 RealValue: CityPop
24 }
25 }
26 }
27 }
28 }
29 }
30
31 Dimension Planet{
32 Category Energy & Mitigation{
33 KPI CO2 emissions{
34 values: AggregatedRealValue: DIV{
35 RealValue: CO2 ,
36 RealValue: CityPop
37 }
38 }
39 }
40 Category Pollution & Waste{
41 KPI NO2 emissions{
42 values: AggregatedRealValue: DIV{
43 RealValue: NO2 ,
44 RealValue: CityPop
45 }
46 }
47 KPI PM2.5 emissions{
48 values: AggregatedRealValue: DIV{
49 RealValue: PM2.5,
50 RealValue: CityPop
51 }
52 }
53 }
54 }
55
56 Dimension Digital Competencies{
57 Category Competencies{
58 KPI MA{
59 values: AggregatedIntegerValues:

SUM{
60 IntegerValue: MobileApplicationsPS
61 }
62 }
63 }
64 }
65
66 Dimension Infrastructure{
67 Category Digital Infrastructure{
68 KPI TM{
69 values:
70 BoolValue:

RealtimeTransportMonitoring
71 }
72 }
73 }

References

1. ITU-T focus group on smart sustainable cities: smart sustainable
cities: an analysis of definitions, 2014. Available at: https://bit.ly/
324U929

2. Visvizi, A., Lytras, M.D., Damiani, E., Mathkour, H.: Policy mak-
ing for smart cities: innovation and social inclusive economic
growth for sustainability. J. Sci. Technol. Policy Manage. 9(2),
126–133 (2018)

3. Mutiara, D., Yuniarti, S., Pratama, B.: Smart governance for smart
city. IOP Conf. Ser. Earth Environ. Sci. 126, 12–73 (2018)

4. Science Communication Unit, UWE, Bristol. Science for environ-
ment policy: indicators for sustainable cities, April 2018. In-depth
Report 12. Produced for the European Commission DG Environ-
ment. Available at: https://bit.ly/3aMjgMK

5. European Commission: Europe 2020 A European strategy for
smart, sustainable and inclusive growth, March 2010. Available
at: https://bit.ly/2R8siwl

6. International Telecommunication Union (ITU): Col-
lection Methodology for Key Performance Indicators
for Smart Sustainable Cities, 2017. https://www.unece.
org/fileadmin/DAM/hlm/documents/Publications/U4SSC-
CollectionMethodologyforKPIfoSSC-2017.pdf

7. Bosch, P., Jongeneel, S., Rovers, V., Neumann, H.-M., Airaksi-
nen, M., Huovila, A.: Citykeys indicators for smart city projects
and smart cities (2017) Available at: https://nws.eurocities.eu/
MediaShell/media/CITYkeystheindicators.pdf

8. Romeo, S., Di Gregorio, M., Alfonso, U., Tozzi, A., Tarquini, F.,
Tomassoni, F.: Digital cities challenge - assessment report for the
city of l’aquila (2019). Available at: https://bit.ly/32YBgiC

9. Ferro, E., Caroleo, B., Leo, M., Osella, M., Pautasso, E.: The Role
of ICT in Smart City Governance. Presented at the (2013)

10. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software
Engineering in Practice, 2nd edn.Morgan andClaypool Publishers,
San Rafael (2017)

11. Rosique, F., Losilla, F., Pastor, J.A.: A domain specific language
for smart cities. In Proceedings of the 4th International Electronic
Conference on Sensors and Applications (2018)

12. Abu-Matar, M.: Towards a software defined reference architecture
for smart city ecosystems. In Proceedings of the IEEE International
Smart Cities Conference (ISC2), pp. 1–6, (2016)

13. Marijuan, A.G., Etminan, G., Moller, S.: Smart cities information
system: key performance indicator guide v.2.0 (2017). Available
at: https://smart-cities-marketplace.ec.europa.eu/resources/1441

14. Hara, M., Nagao, T., Hannoe, S., Nakamura, J.: New key perfor-
mance indicators for a smart sustainable city. Sustainability 8(3),
206 (2016)

15. Luckey,M., Erwig,M., Engels, G.: Systematic evolution of model-
based spreadsheet applications. J. Vis. Lang. Comput. 23, 267–286
(2012)

16. Fowler, M.: Domain-Specific Languages. Pearson Education, Lon-
don (2010)

17. De Sanctis, M., Iovino, L., Rossi, M.T., Wimmer, M.: A flexible
architecture for the key performance indicators assessment in smart
cities. In Proceedings of the 14thEuropeanConference onSoftware
Architecture (ECSA) (2020)

18. Basciani, F., Rossi, M.T., De Sanctis, M.: Supporting smart cities
modeling with graphical and textual editors. In Proceedings of
the 1st International Workshop on Modeling Smart Cities (MoSC)
(2020)

19. Microsoft Research. Key Performance Indicators (KPIs) in Power
Pivot (2019). https://bit.ly/37EFR9r

20. Catarina, S., Carla, S., Ana L.A.: INTELI – Inteligência em Ino-
vação, Centro de Inovação. Urban Indicators and the Smart City
Agenda (2016).Available at: https://pocacito.eu/sites/default/files/
POCACITO_PolicyBrief_No-5_Urban_Indicators_1612.pdf

21. Barns, S.: Smart cities and urban data platforms: designing inter-
faces for smart governance. City Cult. Soc. 12, 5–12 (2018)

22. Curino, C.A., Moon, H.J., Zaniolo, C.: Graceful database schema
evolution: the prism workbench. Proc. VLDB Endow. 1(1), 761–
772 (2008)

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

308 M. De Sanctis et al.

23. Basciani, F., Di Rocco, J., Di Ruscio, D., Iovino, L., Pierantonio,
A.:A tool-supported approach for assessing the quality ofmodeling
artifacts. J. Comput. Lang. 51, 173–192 (2019)

24. Burgueño, L.,Mayerhofer, T.,Wimmer,M.,Vallecillo,A.: Specify-
ing quantities in software models. Inf. Softw. Technol. 113, 82–97
(2019)

25. Colin, A., Thomas, K.: The essence of multilevel metamodeling.
In Martin, G., Cris, K., (eds) Proceedings of the International Con-
ference on the Unified Modeling Language (UML), pp. 19–33.
Springer, Berlin (2001)

26. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon object
language (EOL). In Arend, R., Jos, W. (eds.) Proceedings of the
European Conference on Model Driven Architecture-Foundations
and Applications (ECMFA), pp. 128–142. Springer, Berlin (2006)

27. de la Vega, A., Kolovos, D., Cooper, J.: Efficient generation of
graphical model views via lazy model-to-text transformation. In
Proceedings of the 23rd ACM/IEEE International Conference on
Model-Driven Engineering, Languages and Systems (MODELS)
(2020)

28. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.C.: The epsilon
generation language. In Proceedings of the European Confer-
ence on Model Driven Architecture-Foundations and Applications
(ECMFA), pp. 1–16. Springer, Berlin (2008)

29. Brottier, E., Fleurey, F., Steel, J., Baudry, B., Traon, Y. L.:
Metamodel-based test generation for model transformations: an
algorithm and a tool. In Proceedings of the International Sympo-
sium on Software Reliability Engineering, pp. 85–94 (2006)

30. Dennis, W., Ludovico I., Di Ruscio, D., Alfonso P.: Translational
semantics of a co-evolution specific language with the emf trans-
formation virtual machine. In Proceedings of the International
Conference on Theory and Practice of Model Transformations
(ICMT), pp. 192–207. Springer, Berlin (2012)

31. Tihamer, L., Daniel, B., Anantha, N., Gabor K.: A novel approach
to semi-automated evolution of DSML model transformation. In
Proceedings of the International Conference onSoftwareLanguage
Engineering (SLE), pp. 23–41. Springer, Belrlin (2009)

32. Szvetits, M., Zdun, U.: Systematic literature review of the objec-
tives, techniques, kinds, and architectures of models at runtime.
Softw. Syst. Model. 15(1), 31–69 (2016)

33. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon transfor-
mation language. In Proceedings of the International Conference
on Theory and Practice of Model Transformations (ICMT), pp.
46–60. Springer, Berlin (2008)

34. Martin, W., Jürgen, E., Johannes, S., Angelika, K., Elisabeth, K.,
Wieland, S., Manuel, W.: CARE: a constraint-based approach
for re-establishing conformance-relationships. In Proceedings of
the Tenth Asia-Pacific Conference on Conceptual Modelling
(APCCM), pp. 19–28 (2014)

35. Kolovos, D.S., Rose, L.M., Matragkas, N.D., Paige, R.F., Guerra,
E., Cuadrado, J.S., de Lara, J., Ráth, I., Varró, D., Tisi,M., Cabot, J:
A research roadmap towards achieving scalability in model driven
engineering. In Di Ruscio, D., Kolovos, D.S., Matragkas, N. (eds.)
Proceedings of theWorkshop on Scalability inModel Driven Engi-
neering. ACM (2013)

36. Viswanath, V., Morris, M.G., Davis, G.B., Davis, F.D.: User accep-
tance of information technology: toward a unified view. MIS
quarterly, pp. 425–478 (2003)

37. Mernik, M., Heering, J., Sloane, A.: When and how to develop
domain-specific languages. ACM Comput. Surv. 37, 316–344
(2005)

38. Benoît, C., Bruel, J.-M.: Applying model-driven engineering to the
development of smart cyber-physical systems (2017)

39. Angelakoglou, K., Nikolopoulos, N., Giourka, P., Svensson, I.-L.,
Tsarchopoulos, P., Tryferidis, A., Tzovaras, D.: A methodological
framework for the selection of key performance indicators to assess
smart city solutions. Smart Cities 2(2), 269–306 (2019)

40. Estrada, E., Maciel, R., Negrón, A.P.P., López, G.L., Larios, V.,
Ochoa, A.: Framework for the analysis of smart cities models. In:
Jezreel, M., Mirna, M., Álvaro, R., Adriana, P., Marco, P.-C. (eds.)
Trends and Applications in Software Engineering, pp. 261–269.
Springer, Berlin (2019)

41. Orlowski, C., Ziólkowski, A., Orlowski, A., Kaplanski, P., Sitek,
T., Pokrzywnicki, W.: High-level model for the design of KPIs
for smart cities systems. Trans. Comput. Collect. Intell. 25, 1–14
(2016)

42. Samadhiya, D., Wang, S.-H., Chen, D.: Quality models: role and
value in software engineering. In Proceedings of the 2nd Inter-
national Conference on Software Technology and Engineering
(ICSTE), pp. 320–324 (2010)

43. Deissenboeck, F., Juergens, E., Lochmann, K., Wagner, S.: Soft-
ware quality models: Purposes, usage scenarios and requirements.
In Proceedings of the ICSE Workshop on Software Quality, pp.
9–14 (2009)

44. Ma, Z., He, X., Liu, C.: Assessing the quality ofmetamodels. Front.
Comput. Sci. 7, 558–570 (2013)

45. Giraldo, F.D., España, S., Pastor, O., Giraldo, W.: Considerations
about quality inmodel-driven engineering. Softw. Qual. J. 26, 1–66
(2016)

46. Rui, A., Jácome, C., Joño, F., Pedro, M., Alexandre, P., Joao,
S.: Smelling faults in spreadsheets. In Proceedings of the 30th
International Conference on Software Maintenance and Evolution
(ICSME), pp. 111–120 (2014)

47. Dietmar, J., Thomas, S., Konstantin, S.: Toward interactive spread-
sheet debugging. In Proceedings of the FirstWorkshop on Software
Engineering Methods in Spreadsheets, pp. 3–6 (2014)

48. Cunha, J., Fernandes, J., Mendes, J., Saraiva, J.: Embedding, evo-
lution, and validation of model-driven spreadsheets. IEEE Trans.
Softw. Eng. 41, 241–263 (2015)

49. Thomas, H., Assaad, M., Francois, F., Gregory N., Jacques, K.,
Traon, Y.L., Jézéquel, J.-M.: Model-driven analytics: connect-
ing data, domain knowledge, and learning. (2017) arXiv preprint
arXiv:1704.01320

50. Zafar, M.N., Azam, F., Rehman, S., Anwar, M.W.: A systematic
review of big data analytics using model driven engineering. In
Proceedings of the International Conference onCloud andBigData
Computing (ICCBDC), pp. 1–5. ACM (2017)

51. Stefan, B., Rosen, R.: Digital twin—the simulation aspect. In
Mechatronic Futures: Challenges and Solutions for Mechatronic
Systems and their Designers, pp. 59–74. Springer, Berlin (2016)

52. Madni, A., Madni, C., Lucero, S.: Leveraging digital twin technol-
ogy in model-based systems engineering. Systems 7(1), 7 (2019)

53. Francis, B., Benoit, C., Romina, E., van den Brand, M., Wimmer,
M.: Towards model-driven digital twin engineering: current oppor-
tunities and future challenges. In Proceedings of the International
Conference on Systems Modelling and Management (ICSMM).
Springer, Berlin (2020)

54. Gómez, A., Cabot, J., Wimmer, M.: TemporalEMF: a temporal
metamodeling framework. In Proceedings of the International Con-
ference on Conceptual Modeling (ER), pp. 365–381. Springer,
Berlin (2018)

55. Szvetits, M., Zdun, U.: Architectural design decisions for systems
supporting model-based analysis of runtime events: a qualitative
multi-method study. In Proceedings of the IEEE International Con-
ference on Software Architecture (ICSA), pp. 115–124 (2018)

56. Jugel, D., Schweda, C., Zimmermann, A.: Modeling decisions for
collaborative enterprise architecture engineering. In Proceedings
of the Advanced Information Systems EngineeringWorkshops, pp.
351–362, (2015)

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

MIKADO: a smart city KPIs assessment modeling framework 309

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Martina De Sanctis is Assis-
tant Professor at the Computer
Science department of the Gran
Sasso Science Institute (GSSI), in
L’Aquila, Italy, where she has pre-
viously been postdoctoral resear-
cher. Her research interests include
behavioral and architectural adap-
tation of service- and IoT-based
systems, collective aspects and
modeling of multi-agent systems,
dynamic adaptations and its appli-
cation to several domains, i.e.,
mobility, smart cities, IoT, eHealth.
She received a Ph.D. in Computer

Science at the Doctoral School in Information and Communication
Technology (2018), from the University of Trento and Fondazione
Bruno Kessler (FBK) in Trento. From 2013 to 2018, she was PhD
fellow and researcher at FBK, at the Distributed Adaptive Systems
research unit where she was working on approaches for the dynamic
adaptation of service-based systems, with focus on automated service
composition, and their application in different domains. During her
PhD studies she actively participated in European Projects in the large-
scale collective systems (ICT-FET Proactive project) and digital indus-
try (EIT Digital project) sectors. She has been previously working in
companies as software developer in the business sectors of Geographic
Information Systems (GIS) and Web-based software applications.

Ludovico Iovino is currently Assis-
tant Professor at the GSSI—Gran
Sasso Science Institute, L’Aquila—
in the Computer Science scientific
area. His interests include model-
driven engineering (MDE), Model
Transformations, Metamodel Evo-
lution, code generation and soft-
ware quality evaluation. Currently,
he is working on model-based arti-
facts and issues related to the
metamodel evolution problem. He
has been included in program com-
mittees and organization of numer-
ous conferences as STAF and MOD-

ELS. He also organize the models and evolution workshop from 3
years. He is part of different academic and national projects related to
Model Repositories, model migration tools, Eclipse Plugins and tech-
nology transfer.

Maria Teresa Rossi is a PhD
student at the Computer Science
department of the Gran Sasso Sci-
ence Institute (GSSI), in L’Aquila,
Italy, working for the Center for
Urban Informatics and Modeling
(CUIM) group. Her research inter-
ests include model-driven engi-
neering and its application in the
Smart City domain. She received
a master degree in Business Infor-
matics at the University of Pisa,
Italy, where she completed an
internship at the Knowledge Dis-
covery and Data Mining Labora-

tory (KDD Lab) of the National Council of Research (CNR) of Pisa,
as part of her master thesis project on Mobility Data Analytics.

Manuel Wimmer is full professor
leading the Institute of Business
Informatics-Software Engineering
at the Johannes Kepler Univer-
sity Linz, and he is the head of
the Christian Doppler Laboratory
CDL-MINT. His research inter-
ests comprise foundations of model
engineering techniques as well as
their application in domains such
as tool interoperability, legacy
modeling tool modernization, model
versioning and evolution, and indus-
trial engineering. For more infor-
mation, please visit https://www.se

.jku.at/manuel-wimmer/

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1.

2.

3.

4.

5.

6.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center GmbH (“Springer Nature”).
Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers and authorised users (“Users”), for small-
scale personal, non-commercial use provided that all copyright, trade and service marks and other proprietary notices are maintained. By
accessing, sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of use (“Terms”). For these
purposes, Springer Nature considers academic use (by researchers and students) to be non-commercial.
These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal
subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription
(to the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of the Creative Commons license used will
apply.
We collect and use personal data to provide access to the Springer Nature journal content. We may also use these personal data internally within
ResearchGate and Springer Nature and as agreed share it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not
otherwise disclose your personal data outside the ResearchGate or the Springer Nature group of companies unless we have your permission as
detailed in the Privacy Policy.
While Users may use the Springer Nature journal content for small scale, personal non-commercial use, it is important to note that Users may
not:

use such content for the purpose of providing other users with access on a regular or large scale basis or as a means to circumvent access

control;

use such content where to do so would be considered a criminal or statutory offence in any jurisdiction, or gives rise to civil liability, or is

otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association unless explicitly agreed to by Springer Nature in

writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a systematic database of Springer Nature journal

content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a product or service that creates revenue,
royalties, rent or income from our content or its inclusion as part of a paid for service or for other commercial gain. Springer Nature journal
content cannot be used for inter-library loans and librarians may not upload Springer Nature journal content on a large scale into their, or any
other, institutional repository.
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not obligated to publish any information or
content on this website and may remove it or features or functionality at our sole discretion, at any time with or without notice. Springer Nature
may revoke this licence to you at any time and remove access to any copies of the Springer Nature journal content which have been saved.
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied
with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law,
including merchantability or fitness for any particular purpose.
Please note that these rights do not automatically extend to content, data or other material published by Springer Nature that may be licensed
from third parties.
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a regular basis or in any other manner not
expressly permitted by these Terms, please contact Springer Nature at

onlineservice@springernature.com

mailto:onlineservice@springernature.com

