mociles

www.ceosforcities.org

CITY VITALS 2.0
 Benchmarking City Performance

\leftrightarrow CONNECTED CITY
Im INNOVATIVE CITY
! TALENTED CITY

* YOUR DISTINCTIVE CITY

Joe Cortright, Senior Policy Advisor for CEOs for Cities, Impresa, Inc.
Made possible with generous support from The Richard H. Driehaus Foundation

TABLE OF CONTENTS

4 Introduction
6 THE CITY VITALS INDICATORS
10 metropolitan areas
13 THE CONNECTED CITY
23 the innovative city
29 the talented city
37 YOUR DISTINCTIVE CITY

```
© 2012 BY CEOS FOR CITIES
```

all rights reserved
SEN:1-4276-1308-7
UNIVERSITY OF CHICAGO 1155 EAST 60 TH STREE CHICAGO, IL 60637

CORE VITALITY

51 METROPOLITAN PERFORMANCE
58 APPENDIX
64 CHANGES FROM CITY VITALS 1.0
65 REFERENCES

INTRODUCTION

CEOs for Cities is a learning community and partnership network that connects cross-sector, cross-generational civic CEOs and urban leaders to each other and to smart research, ideas, practices, case studies, lessons learned, and compelling stories for making cities more economically successful.

We help cities and regions FACE (Frame, Act, Connect, \& Engage) their opportunities and challenges:

- We Frame and measure work in a way that is easy-tounderstand, remember, and use (City Vitals- Connections, Innovation, Talent, Your Distinctiveness)
- We Act by motivating, mobilizing, focusing, and accelerating action on memorable short-term goals that demonstrate measurable progress (City Dividends and Dividend Prizes
- We Connect with the latest, up-to-date, cutting edge information from throughout the world about how to make cities more successful, and with the people creating and implementing those ideas (Our Learning Community/Partnership Network)
- We Engage by harnessing and connecting cross-sector, crossgenerational talent within and between cities for the purpose of improving their city (Our City Clusters)

City Vitals is our signature research framework. We benchmark city/regional performance in the four areas most vital to CITY success: Connections, Innovation, Talent, and Your distinctivenes s. We believe that given the complex, interconnected problems that cities and regions face, it is critical to first research, frame, and organize work that puts a focusing lens on the city and region, and helps to see and understand the critical levers for city and regional success. We believe that framing is critically important, because, as Wayne Dyer has noted, "if you change the way you look at things, the things you look at change.'

We also believe that once the issues are framed and the levers of success are identified, it's equally important to motivate, mobilize, focus, and accelerate action that can show demonstrable and measurable progress on the critical success levers. City Dividends is our signature action agenda. We focus our action agenda on City Dividends and Dividend Prize competitions, premised on our research and experience that measurable progress, or "moving the needle," on targeted work reaps huge economic growth dividends for cities, and accelerates movement on important goals. City Dividends is based on what Harvard Professor Teresa Amabile calls
he "progress principle"- the single most important motivator and catalyst of positive action is making progress and showing forward momentum in meaningful work.

Finally, we believe that it is important not only to frame and act but also to connect and engage. Cities must always be thinking ahead and learning from the best ideas and practices from all sectors, leaders at all levels, and cities, regions, states, and countries throughout the nation and the world. The world is coming at us at lightning speed, so this will require constant learning, change, and adaptation. As a 2012 McKinsey Global Institute report noted, "Be connected. Rather than seeing each other city as competition, building strong connections to other cities can become a collective strength...There are potentially large benefits from being able to tap into the experience of other cities." The cities that will win in the new networked economy are hose that make their boundaries porous to new ideas and talent and demonstrate the humility to understand that there is always something more to learn from someone else, somewhere else.

The future belongs to those cities and regions who can fram their opportunities and challenges, act in ways that demonstrate measurable progress, and connect and engage with the smartes people and the smartest ideas in the most places and in the most ways. City Vitals is an important component of our mission to, in the words of Steve Jobs, "tear down walls, build bridges, and light fires.

Lee Fisher

President and CEO
CEOs for Cities
Lfisheraceosforcities.or
www.ceosforcities.or

THE CITY VITALS INDICATORS

The Connected City

The indispensable asset in a knowledge economy is smart people. Cities are places where people build knowledge through education and experience. Cities attract smart poople and create opportunities for hem to develop and apply what they now. Talent, which we measure by ducational attainment, the number of creative professionals, the migration of well-educated young adults and he number of foreignborn college graduates, reveals the underlying Itellectual capital a region can draw on to build its economy and to weather the inevitable shocks of competition and change.

IIII \equiv

The Innovative City

The ability to generate new ideas and to turn those ideas into reality s a critical source of competitive advantage not just for businesses but for regions, as well. Economies and regions advance by a process of trial and error. Those places that generate many trials of novel products and services are most likely to move ahead. Invisible and weightless, ideas can't be measured directly, but the footprints they leave in the economic landscape can be traced by counting numbers of patents, the dollar value of venture capital investments, the extent of personal entrepreneurship and the number of small businesses.

40

The Talented City

Cities thrive as places where people can easily interact and connec These connections are of two sorts: the easy interaction of local residents and easy connections to the res of the world. Both internal and external connections are important. Internal connections help promote the creation of new ideas and make cities work better for their residents. External connections enable people and businesses to tap into the global economy. We measure the local connectedness of cities by looking a a diverse array of factors including voting, community involvemen, economic integration and trans use. Our measures of externa connections include foreign travel the presence of foreign students an broadband Internet use.

Your Distinctive City

The unique characteristics of place may be the only truly defensible source of competitive advantage for regions. In world of global competition, a strategy of "pretty much the same, maybe heaper" is a recipe for mediocrity and conomic stagnation. Our measures of distinctiveness are inherently hcomplete. Every city has its own unique characteristics for which there are few, If any, statistics. We offer some initial easures of distinctiveness drawn fom market data about consumer behavior and its variance across U.S. netropolitan areas.

Core Vitality

A strong urban core also plays a critical economic role. The urban center of metropolitan areas is the focus of cultural activities, civic identity, gevernmental institutions and usually has the ensest employment, particularly in fi nancial, rofessional and creative services. Urban cores are so the iconic centers of cities, where interaction and connections are strongest.
to measure the vibrancy of urban centers, we computed the income, educational attainment and poverty levels of the urban neighborhoods within miles of the center of each region's central usiness district. IWe use this common yardstick to overcome the problem that arises from using widely varying city boundaries to make internetropolitan comparisons.

Metropolitan Performance

Ultimately, the four dimensions of success that we have outtined in City Vitals-talent, innovation, connections and distinctiveness-are reflected in the measurable performance of metropolitan economies. In our work with urban leaders, CEOs for Cities has identified several key indicators that are frequently used to assess metropolitan performance-per capita income, poverty, vehicle miles traveled and greenhouse gases.

What does it take for a metropolitan area to be economically successful today?

In an increasingly global and knowledge-driven economy, the ingredients of success are changing. At CEOs for Cities, we have observed four essential characteristics that underpin economic prosperity. In a sense, the four letters that make up the word "city" spell out the genetic code of urban success: CONNECTIONS, INNOVATION, TALENT and YOUR DISTINCTIVENESS. This report explores each of those characteristics and explains why they are of crucial importance to urban leaders.

Overwhelmingly, U.S. economic activity is concentrated in large metropolitan regions. The nation's large metropolitan areas are increasingly being recognized as the engines of the national economy Globalization and technological change are reshaping the opportunities for economic prosperity. Cities and our nation have a strong stake in discovering what it takes to build competitive regional economies.

City Vitals is a benchmarking tool urban leaders can use to take stock of their metropolitan area performance relative to other large U.S. metropolitan areas in the four areas that matter most to urban success in the 21st Century: connections, innovation, talent and your distinctiveness. This report offers some comparative data showing how cities stack up on a series of indicators related to each of these four dimensions.

We have compiled data in each of these four areas-connections, innovation, talent and your distinctiveness-to illuminate and better define the discussion of what it takes to build a successful metropolitan economy. There are, as often is the case, limitations to the data. Our indicators of talent, for instance, are good, general measures of skill but should not be taken to imply that only those with a college degree are talented. Nor do such broad measures capture the highly specialized talents that exist for corporate finance in New York, for
movie production in Los Angeles, for petroleum geology in Houston or for logistics in Memphis. But these data provide a means for individual metropolitan areas to assess candidly their relative strengths and weaknesses against their peers nationally. While the data are the best and most recent available, they are still only indicators of the broad subjects we discuss.

Each indicator is computed at the metropolitan level using the metropolitan area definitions adopted by the Office of Management and Budget. Metropolitan Statistical Areas generally encompass entire metropolitan economies and are the best reflection of regional economic performance. Political jurisdictions, like incorporated cities and counties, usually capture only a portion of a regional economy. The great variation in the scope of political boundaries makes it almost impossible to make reasonable comparisons of economic indicators across groups of cities.

Our analysis suggests there is no one recipe for success, no single path for cities to follow. As a result, we do not offer or suggest that there is an overall ranking from best to worst that emerges from this data. Each metropolitan area is different, and can reasonably expect to have different opportunities and challenges than other metropolitan areas.

METROPOLITAN AREAS

Atlanta-Sandy Springs-Marietta, GA
Austin-Round Rock, TX
Baltimore-Towson, MD
Birmingham-Hoover, AL
Boston-Cambridge-Quincy, MA-NH Buffalo-Niagara Falls, NY
Charlotte-Gastonia-Concord, NC-SC
Chicago-Naperville-Joliet, IL-IN-WI
Cincinnati-Middletown, OH-KY-IN
Cleveland-Elyria-Mentor, OH

Columbus, OH

Dallas-Fort Worth-Arlington, TX
Denver-Aurora-Broomfield, CO
Detroit-Warren-Livonia, MI
Hartford-West Hartford-East Hartford, CT
Houston-Sugar Land-Baytown, TX
Indianapolis-Carmel, IN
Jacksonville, FL
Kansas City, MO-KS
Las Vegas-Paradise, NV
Los Anseles-Lons Beach-Santa Ana, CA
Louisville-Jefferson County, KY-IN
Memphis, TN-MS-AR
Miami-Fort Lauderdale-Pompano Beach, FL
Milwaukee-Waukesha-West Allis, WI

Minneapolis-St. Paul-Bloomington, MN-WI Nashville-Davidson-Murfreesboro-Franklin, TN New Orleans-Metairie-Kenner, LA New York-N. New Jersey-Long Island, NY-NJ-PA Oklahoma City, OK Orlando-Kissimmee, FI
Phoenix-Mesa-Scottsdale, AZ Pittsburgh, PA
Portland-Vancouver-Beaverton, OR-WA Providence-New Bedford-Fall River RI-MA Raleigh-Cary, NC
Richmond, VA
Riverside-San Bernardino-Ontario, CA Rochester, NY
Sacramento-Arden-Arcade-Roseville, CA
St. Louis, MO-IL
Salt Lake City, UT
San Antonio, TX
San Diego-Carlsbad-San Marcos, CA
San Francisco-Oakland-Fremont, CA
San Jose-Sunnyvale-Santa Clara, CA
Seattle-Tacoma-Bellevue, WA
Tampa-St. Petersburg-Clearwater, FL
Virginia Beach-Norfolk-Newport News, VA-NC
Washington-Arlington-Alexandria, DC-VA-MD-WV

The Connected City

City economies work best when they do a good job of connecting people to one another, as Jane Jacobs famously argued decades ago (Jacobs, 1969). Nobel Laureate economist Robert Lucas echoed this observation: "What can people be paying Manhattan or downtown Chicago rents for, if not being near other people?" (Lucas, 1988). The fundamental purpose of cities is to connect people.

In cities, these connections are both internal and external: cities have to connect their residents to one another and also connect the city as a whole to the rest of the world. In a global economy, the essence of success is the ability to tap into the global marketplace. Ideas and knowledge are more valuable because there are so many more communities, consumers and businesses that can use them. Bill Gates would not be numbered among the richest people in the world if he could sell software only to people in Seattle or Washington State.

There are many dimensions in which a city has to connect. The simplest and most obvious are the physical connections-ports and airports-that facilitate the flow of goods among nations. But the importance of goods movement is increasingly being surpassed by connections between people, who are the lifeblood of nearly all urban
economies. We define these connections broady from the far-reaching global, to the intensely local. Great cities are connected at all these levels. Consequently, we measure key international connections, especially among people, by examining the number of persons traveling outside the U.S. in each metropolitan area, as well as the number of foreign students each metropolitan area hosts. We also look at technology. To what exten other end of the spectrum, we consider more local connections like voti and volunteering, both indicators of how connected people are in their role as citizens. We also examine economic integration-the extent to which people in different income strata live near one another in the metropolitan area.

As economist Harald Bathelt and his colleagues have observed in a slightly different context, local success in the global economy is a function of "local buzz and global pipelines." That is to say, urban areas have to have their own strong localized interactions and knowledge to function well locally, but they must also have easy and extensive connections to other places with "buzz" around the world (Bathelt, Malmberg, \& Maskell, 2002) Our measures consider both types of connections.

VOTING

Number of votes cast in the November 2008 presidential election divided by the voting age population of the metropolitan area, 2008

One of the most basic measures of connections is whether people partici-	1 Mimeapolis:StPaul-Bloministon,MN-WI	76.4\%	26 Boston-Cambridee Quincy MA-NH	61.7\%
pate in the democratic process. The extent to which citizens register and vote is	2 Milwalke Waukesha-Westalis, wI	72.3	27 Indiampolis-Carmel,IV	\%
a good indication of their level of awareness of political issues and commitment	3 Raleieh Cary, Nc	697\%	28 Buffito-Nigagaralals, NY	60.9\%
to their fellow citizens. As Robert Putnam has argued, voting is a key indicato	4 StLouis Mo-II	68.7\%	29 Memphis TN-NS-AR	60.8\%
We measure voting in citie	5 Jackonville, FL	68.4\%	${ }^{30}$ Tampa-StPetersburs Clearwater FLI	60.3\%
2008 presidential election divided by the voting age population of the metroopli-	6 Columbus, OH	68.28	${ }_{31}$ Orlando-Kisisimmee, FL	59.5\%
tan area (Leip, 2009). This measure is more broady defined than conventional	7 Kansas City Mo-kS	68.1\%	32 Nastwille Davidson-Muufrestorofanklin, TN	59.0\%
res that look only at the number of persons who vote divided by the total	8 Richmond, VA	678\%	33 Atante-SandSSpringes.Marieta, GA	58.2\%
er of registered voters. Not registering is an even stronger indicator of dis-	9 Cleveland:Elyria-Mentor, OH	67.5\%	34 San Francisoo-oadand.Fremont, CA	57.8\%
connectedeness from civic life than not voting. In addition, because Census data	10 Philadeldhia-Camden-Wilminiton, PA-NJ-DE-MD	66.8\%	${ }_{35}$ Providene -New Bediord-Falliver; PI-MA	57.2\%
counts all persons residing in the U.S. regardless of citizenship status, the denom-	11 Detroit Warren-Livonia, MI	65.7\%	Sacramento-Arden-Arcade Fosesille, CA	6\%
te.	12 Denver-Aurora:Bromfiel, co	65.6\%		\%
	13 Cincimati-Middelown, OH-KK-IN	64.9\%	${ }_{38}$ Olkahoma City OK	56.0\%
the most basie way in its governance.	14 New Orieans-Metairice Kener [iA	64.4\%	39 Austin-Roundrook, TX	55.5\%
There are pronounced differences in voting among U.S. metropolitan areas.	15 Louisille Jefereson County,KY-IN	63.9\%	40 SanDiegococarshad.San Maroos, CA	\%
The leader is Minneapolis, where more than thre-quarters of all adults of voting	16 Portland-Vancowver.Beaveroto, OR-WA	63.9\%	41 Miami: Fortrauderde Peompano Beach, FL	52.4\%
age cast ballots in 2008 . Milwaukee was a close second with about 72 percent of	17 Pitsuurgh PA	63.6\%	42 Saltakectity UT	52.0\%
adults voting. In the typical metropolitan area, the number of votes cast was equal	18 Wastington-ATington-Alexandiri, DC:VA-MD	63.4\%	43 NewYorkN.:NewJeseeg-Iongisand, NY	
62 percent of the voting age population. The lowest levels of voting were	19 Charoteleceastonia-Conorrt, NC-SC	62.7\%	44 Sanjoses-Sunnvale-Santeclara, CA	50.1\%
in the So	20 Virginia Beach-Norfolk-NewportNews VA-Nc	62:7\%	45 DalassFortWorth-Arington, T T	49.2\%
numbers of	21 HartordWest Hartordeast Hartord, CT	${ }^{62.6 \%}$	${ }_{46}$ Phonis.Mes-Sostusale, AZ	48.6\%
43 percent turnout.	22 Birmingham.Hoveras AL	62.5\%	${ }_{47}$ Las Vegas Praraise, NV	2%
	23 Baltimore Towson, MD	62.3\%	48 San Antonio, TX	479\%
	24 Seattle Traoma.Belene, WA	62.2\%	49 LosAngeless_ongEeach-Santa Am, CA	46.9\%
	${ }_{25}$ Rocheserer, NY	62.2\%	50 Houston-SLugarLand-Raytown, TX	44.9\%
			51 Riverside-San Bemardino-Ontari, CA	${ }^{43.2 \%}$

COMMUNITY INVOLVEMENT

Percentage of the metropolitan area population that reported volunteering for a community activity in the past year (2011)

Volunteerism and personal engagement in non-proft and community-ori-	1 Sattakecity UT	42.8\%	26 Boston-Cambride Quincy MA-NH	272\%
ented endeavors has traditionally been a point of pride for Americans. The degree	2 Mimmeapois:StPaul-Blominitot,MN-WI	37.5\%	27 Ridimmon, VA	2772\%
	3 SanJose Sunnvale Santa Clar, CA	35.8\%	28 Saeramento-Arden-Aracae Posoesille, CA	272\%
ests is a good indicator of community involvement. Community involvement has	4 Portland-Vancowver-Bavereto, OR-WA	35.2\%	29 Dallas-FortWorth-Atington, TX	5.8\%
community members facilitate economic interaction.	5 Indiampolis-Carmel,IN	34.0\%	30 Phonix-Mes-Soctstale,AZ	26.6\%
Since there is no comprehensive government data on the extent of vol-	6 Milvauke Waukesha-Westallis, WI	33.3\%	${ }_{31}$ Orlando-Kisisimmee, FL	26.5\%
unteerism, we rely on private surveys that have asked a representative sample	7 Sanfranciso-oakland.Fremont, CA	32.5\%	32 Memphis TN-MS AR	4\%\%
of persons about their private activities. Our source of data is a Scarborough	${ }_{8}$ AtantasasadSSprinses.Marieta, GA	31.\%	33 Virginia eeah-Norfolk-NewportNews VA-NC	26.4\%
esearch survey, which asks whether respondents have participated in volunteer	9 Seatte Tracoma Felleve, WA	31.7\%	34 Pitsuurgh PA	25.9\%
work in the previous year (Scarborough Research, 2011).	10 Baltimore Towson,MD	31.4\%	35 Buffilo-Niagara Fills, nY	25.3\%
About half of surveyed adults report having volunteered for some type of	11 Raleigh-Cary, NC	30.8\%	${ }_{36}$ Jadsannile FL	.2\%
	12 Wastington-Atington-Aleandrin, DC.VA-MD-Wv	30.4\%	${ }^{37}$ okkahoma City, OK	25.2\%
	13 San Antonio, TX	30.1\%	38 Houston-Sugar Land Baytown, TX	25.1
Miami (19 percent) and Providence (22 percent).	14 Austin.Found Rook, TX	29.9\%	39 Louisisile Jefereson Count, KY-IN	\%
	${ }^{15}$ Rochester, NY	29.6\%	40 Bimingham Hoover, AL	24.6\%
	16 Denver-Aurorabiromfed, CO	29.4\%	41 Naskulle-Paxideon-Muffeesboro-Frankidin, TN	24.6\%
	17 Kansas City Mo-ks	29.2\%	42 Riverside-SanBemardino-Ontari, CA	24.6\%
	18 Detrot-Waren-Livomia, MI	28.8\%	43 HartordW Westlartord.EastHartord, CT	24.1\%
	19 Cincimati-Middetown, OH-KY-IN	28.7\%		24.1%
	20 Philadelphia-Camden-Wilininton, PA-NJ-DE.MD	28.6\%	${ }_{4} 5$ Los Angeles-IongBead.-Santa An, CA	23.7\%
	21 Cleveland.Elyria-Mentor, OH	28.2\%		23.6\%
	22 Charolote-Castonia-Conoort, NC.SC	28.\%	${ }_{47}$ Neworteans-Metarice:Kenne,LA	22.8\%
	${ }^{23}$ Columbus OH	27.9\%	48 Las Vegas Paradie, NV	22.6\%
	${ }_{24}^{4}$ SanDiegoc-Carsbad.San Marcos, CA	277\%	49 Tampa-StPeteresurg Clearvater PL	22.6\%
	25 StLouis, M-IIL	27.5\%		22.0\%
			51 Niami:Fortauderdale:Pompano Peach,FI.	20.7\%

ECONOMIC INTEGRATION

Percentage of the population living in middle-income neighborhoods (median family income was between 75 percent and 150% of metropolitan median family income), 2009 .

A key aspect of the connected city is the extent to which our neighors an	1 Mimeapolis.StPaul-Blomington,MN-WI	84.3\%	26 Baston-Cambride - Quiney, MA-NH	70.5\%
aiainances represent the diversity of our population. But the physical layout of	2 PorthandVVancouver-Beaveron, OR-WA	81.\%	27 Charolote Castonia-Conoort, NC-SC	\%
different neighborhoods. As a number of studies have shown, economic isolation ex-	svegas.Paradie, NV	80.4\%	sille CA	\%
erbates the problems associated with poverty. Neighborhoods with concentrated	4 Jadsonnille, FL	79.3\%	29 Milvalke Waukesha-Westallis, WI	70.0\%
verty make it harder to find positive role models and connect to social networks	5 Seatle TRaoma-Bellenue, WA	79.2\%	30 Neworteans-Metairie Kenner:LA	69.8\%
that enable employment, and they intensify problems of crime and drug abuse	6 Virsminiaeach -Norfolk-NewportNews VA-NC	78.5\%	31 Indiampolis-Carmel,IN	69.7\%
fects on low-income people, including worse economic outcomes for adults, higher	7 Rooceserer NY	77.6\%	32 SanJoses-Sunnvale Santalarr, CA	.6\%
school dropout and teenase pregnancy rates, and worse academic achievement for	8 HartiordWestHartordEastHartort, CT	774\%	${ }^{33}$ Riverside-SanBerararino-Ontari, CA	69.1\%
schoolchildren. Research shows that poor people who live in mixed-income areas	9 Orlando-Kisisimmee.FL	${ }^{773}$	34 OklahomaCity, ok	68.8\%
do better than poor people wholive in areas of concentrated poverty (Jargowsky and Swanstrom 20og). Well-connected metropolitan areas have less division among	10 Pitssurus, PA	76.6	${ }_{35}$ DetrotitWarren-Iivonia, पII	68.3\%
economic groups.	11 Cincimati-Midaldeown,OH-KX-IN	76.18	36 Cleveland-Elyria-Mentor, OH	\%
iety of ways to measure economic integration and com-	12 Sattakecity UT	75.9\%	Columbus, OH	67.9\%
pare metropolitan areas. We use an index developed by Sean Reardon and Sandra	${ }^{13}$ Louisisill Jefereson County, KY-IN	75.78	38 Denver-Aurora-Promfeld, CO	65.8\%
neighborhoods where the median family income is between 67 percent and 150	14 Tampa-StPetersburg Clearwater FL	75.7\%	39 SanDiegocaralsad.San Maross CA	65.8\%
percent of the median family income for the entire metropolitan area (Reardon \&	15 Raleigh-Cary, Cc	75.1\%	40 Phoenix-Mes-Scotssale, AZ	65.6\%
Bischoff, 2011). For the nation as a whole, median family income is about $\$ 75,000$,	16 Buffio-Niagara Fills, NY	74.4%	${ }_{41}$ Phildedephai-Camden-Wimininton, PA-N	
so, in a typical metropolitan area, this definition of income includes neighborhoods	17 Richmond, VA	74.4%	42 Miami FortLauderdale Pompmano Beach, FL	65.1\%
tual income cut-offs vary from one metropolitan areato another based on the overall	18 StLouis Mo-IL	${ }^{74.2 \%}$	${ }_{43}$ Sanfrancisoo-Oakand.Fremont C ,	64.5\%
median income for the metro area. Because this measure is based on families, it ex-	19 Kanasacty Mo-ks	${ }^{73.88 \%}$	44 Bimingham-HoveraL	64.4
cludes households consisting of just one person or un-related persons.		72.6%	${ }_{45}$ Austin Found Rook, TX	61.8\%
income neighborhoods were Minneapolis, Portland and Las Vegas. In each of these	21 Naskrille Pavideon-Murfeesboro-Franklin, TN	71.9	${ }_{46}$ San Antonio, TX	8\%
he	22 Alanta-Sandy Springes.Marieta, GA	71.2\%	NewYork.N.NeewJersey-Iongisland	
population lived in neighborhoods in which the median family income was between	${ }^{23}$ Baltimore Towson,MD	70.9\%	48 Dallas-FortWorth-Arington, TX	9\%
relative separation between rich and poor households is found in New York, Dallas	24 Chiagoo-Naperille -Joiet L-TIN-WI	5\%	49 Los Angeless.ongSeach-Santa Ama CA	\%
Los Angeles, Memphis and Houston, where fewer than 60 percent ofall households	25 Wastington-Arington-Alexadria, DC.VA-MD.	70.5\%	50 Memphis TN-MS-AR	\%
ghborhoods.				

TRANSIT USE

Percentage of non-poor workers that commute via public transportation, 2010.

and well-functioning public transit system gives metro-	1 NewYork.N.NewJersey-Long Sland, NY-N.P.PA	45.1\%	26 Saltakecity, UT	8.4\%
politan residents more choices of how to travel and can be critical to the mobility	2 Wastington-Arington-Alexandiai. DC.VA-MD-WV	20.9	Lous, Mo-II	8.1\%
of the young, the old, the disabled and the poor. And unlike private automobile	3 Chicgeo-Naperille Jodiettr-IN-WI	19.8\%	${ }^{28}$ Sandiego Carrsad.San Maros, CA	8.0\%
transportation, which isolates citizens from one another, public transit requires	4 Boston-Cambridge-Quingy MA-NH	19.5\%	${ }^{29}$ SanJose-Sumyvale-Santalara, CA	7.5\%
which transit use is a choice, rather than a necessity, we are especially interested	5 Prildedphia-Camden-WIImington.PA-N..DE.MD	19.3\%	30 Austin-Round Rock, TX	7.3\%
in use of public transportation by a city's non-poor population.	6 Sanfrandiso-oadland.Fremont CA	18.8\%	31 San Antomio, TX	7.2\%
Our data on transit use is drawn from the American Community Survey for	7 Batimore Towson, MD	18.6\%		6.7\%
the period 2008-2010, which asks workers about their usual means oftransporta-	8 LosAngeles.IongEeach Santa An, CA	16.2\%	${ }_{3} 3$ Detroit-Waren-Livonia, MI	6.5\%
tion to work. We compute the percentage of non-poor workers, aged 18 to 64, that	9 Pitsourgh PA	14.4\%	34 Orlando-Kisisimmee,FL	6.3\%
report having used public transportation for their journey to work. Our measure	10 Milvaukee Waukesha-Westallis WI	14.0\%		6.3\%
excludes those persons who work at home.	11 Buffio-Nigagaraluls, NY	13.7\%	${ }_{36}$ Phoenix.Mesas-Sotussale, AZ	6.2\%
About one in ten non-poor workers in the typical large metropolitan	12 Portanad-Vancowver.Beaverton, OR-WA	13.3\%	${ }^{37}$ Columbus OH	5.9\%
systems, the rate of use is highest, with 45 percent of workers in New York and	13 Seatle-Trama.-Elenees. WA	12.8%	38 Houston-Sugar Land.Eaytown, TX	5.7\%
a fifth or more of workers in Washington, Chicago, Boston, Philadelphia and S	14 Hattord-Westhatford.EastHatfort, CT	117\%	39 Memphis TT-MS AR	5.7\%
Francisco using transit. Fewer than 3 percent of non-poor workers regularly use	15 Clevendend Elyria Mentor, OH	11.6\%	${ }_{40}$ Relaiedh Cary, NC	5.3\%
transit in Indianapolis, Nashvill and Oklahoma City.	16 Minmeapolis:StPaul-Blomington,MN-WI	114\%	41 Jadsannille, FL	5.1\%
	17 Miami:Fort Lauderdle Pompano Beach, FL	10.9\%	42 Charotece Castonia-Conocord, NC-SC	5.1\%
	18 Denver-Aurorabiromfed, CO	10.4\%	${ }^{43}$ Saramento-Arden-Arade Rosesille, CA	\%
	19 Richmond, VA	10.1\%	44 Tampa-StPetersburs Clearwerer FL	4.7\%
	${ }^{20}$ Rocheseser,NY	10.0\%	45 Kansascity,Mo-ks	\%
	21 Cincinati-Middetown, OH-KY-IN	9.9\%	46 Riverside San Bemardino-Ontari, CA	4.5\%
	22 Alantas:SandSSpings-Marietta, GA	9.7\%	${ }_{47}$ Dallas FortWorth-Atrington, TX	4.4\%
	23 Louisille Jefferson County,KK-IN	9.7\%	48 Biminigham.Hovere, AL	3.8\%
	24 New Orleans-Metairic-Kenmer, LA	9.6\%	${ }_{49} 9$ Indiamamolis-Carmel, 1 N	2.8\%
	25 Las Veasasparadies, NV	${ }^{9.2 \%}$	50 Nashulile-avaidon-Muffeesbor-Pranklin, TN	2.3\%
			51 okahomaCity, OK	0.9\%

WALKABILITY

Average WalkScore for the principal city in each metropolitan area, 2011.

hen they work well, cities give their residents a variety of ways to travel,		${ }^{85} 3$	26 San Jose-Sunnvale Santalara, CA	54.5
including by automobile, transit, cycling and walking. Walking is a fundamen	ont, CA	84.9	ta-Sandy Sprinss- Marieta, GA	52.9
attribute of urban spaces. Urban spaces are, almost by definition, places where	3 Boston-Cambride.e Quincy, MA-NH	79.2	28 Richmond VA	51.1
s more convenient and common for people to walk between destinations than	4 Chicago-Naperville.joliet $\mathrm{H-IN-WI}$	${ }^{74} 3$	29 Tampa-StPetersburs Clearwater:FL	51.1
	5 Philadephia-Camden-Wiminington.PA-NJ-DE-MD	74.1	30 Deforit-Waren-Livonia, MI	49.9
	6 Seattle Taomareselene, WA	${ }^{73} 7$	31 Houston-Sugaramand.Batown, TX	49.8
As Jane Jacobs has observed, walkability is at the heart of urban vibrancy-short	7 Washington-Atrington-Alexandria, DCVA-MD.WV	73.0	32 Sacramento-Arden-Arade Rosesille, CA	49.3
blocks, population density and diverse uses, building types and ages all play	8 HartordWest Hatford.EastHartord, CT	${ }^{72} 7$	33 Las Vegasararaise, NV	49.2
"sidewalk ballet" (Jacobs, 1961). Walkability also appears to co	9 Providene-New Bedaror-Falliver. PR-MA	${ }^{72.7}$	34 Columbus or	47.4
cint value in the real estate marketplace. Homes located in more walkable	10 Miami FortILauderdale Pompmono Beach, FL	${ }^{72.5}$	35 Oriando-Kisisimee, FI	47.1
locations command higher prices than otherwise identical homes with lower lev-	11 Mirmeapois SSt Paul-Blomington, MN	69.3	36 Dallas-FortWorth-Arington, TX	46.9
f wakabaility Cortright,	12 Portand-Vanowuer-Baeverton, OR-WA	66.3	${ }_{37}$ Austin-PoundRoos, TX	46.7
data about the proximity of local destinations to calculate the walkability of res		65.9	${ }_{38}$ Riverside-San Bemaxdino-Ontario, CA	46.7
dential properties throughout the United States (Front Seat Inc, 2011). Base	ititsurub, PA	64.1	39 Phonixi-Mesas:Sotstade, AZ	45.4
a house's proximity to schools, parks, grocery stores, restaurants, coffee shops,	${ }_{15}$ Baltinore Towson, MD	63.9	40 Raleigh Cary, NC	41.4
banks and other common destinations, the site computes a score ranging fro	enester, NY	63.1	41 San Antomi, TX	40.8
zero to 100 to illustrate the relative walkability of any given house. The website	17 St. Louis, Mo-II	61.4		40.8
S agregated these scores for major cities in the U.S, a	18 Milivaukee Waukesha-Westallis wi	${ }^{60.6}$	43 Birmingham-Hover, AL	40.0
el of walkability of the principal or most populous	19 Denver-AurorazBromfid, co	60.4	44 Louisille Jefferson County,KY-N	39.7
tropolitan area.	20 Buffio-Niagarafals, NY	60.1	45 Memphis TN-MS SAR $^{\text {a }}$	39.4
	21 Cincimati-Middetown, OH-KX-IN	58.9	46 Kansascity Mo-ks	38.1
and Jacksonville have the lowest WalkScores amons cities in the nation's largest	$22 \mathrm{Cleveland-Elyra-Mentor}$,	58.3	47 Indiampolis-Carmel, IV	37.4
metropolitan areas.	${ }_{23}^{3}$ Satt Lakecity UT	57.6	48 Nassiville-Pavideon-Murfeestor-PTanklin, TN	36.4
	${ }_{2} 4$ SanDiegoc-Carshad-SanMaross, CA	55.7	49 OlkahomaCity OK	35.6
	25 Neworleans:Metairie. Kenner_LA	55.6	50 Charlote- Castoria-Conorord, NC-SC	34.3
			51 Jadsonnille, FI	32.6

NTERNATIONAL STUDENTS

Number of foreign students enrolled in institutions of higher education in the metropolitan area per 1,000 population.

s the economy becomes increasingly global, connections to people in oth-	1 Buffio-Niagarafuls, NY	55.5	26 Mimmeapisistraul-Blominigton, MN-WI	15.6
countries become more important as a means of building understanding and	2 Boston-Cambidee -uincy, MA-NH	52.4	27 St. Louis MO-II	${ }^{13.8}$
providing a basis for commerce. The United States has long attracted many of the	3 Sanjose-Sunnvalesantalara, CA	48.0	28 Chicago-Naperviliedoliet, I-N-WI	13.7
	4 Austin.Roundrock, TX	42.5	29 Cleveland:ElyriaMentor; OH	13.6
	5 San Francisco-Oakdand.FRemont CA	374	30 Phoonix-Mees.Soctssale, AZ	13.1
International Education, an affliate of the United Nations, we are able to count	6 Washington-Arington-Alexadria, DC:VA-MD-WV	35.7	31 Las Vegasararadis, Nv	12.5
the number of international students enrolled in institutions of higher educa-	7 Okahomacity OK	34.2	32 Detrot-Warren-Livoni, MI	12.4
tion in every metropolitan area in the United States (Institute of International	8 Columbus, OH	30.0	33 Milwalke Waukesha-Westalis, wI	12.1
Education, 2008). We use this data to calculate the number of international stu-	9 Pochester,NY	28.3	34 Cincimati-Middelown, OH-KK-IN	${ }^{12.1}$
dents per 1,000 population in each of the nation's 511 largest metropolitan areas.	10 LosAngeles-IongEeach-Santana, CA	26.7	35 Richmond, VA	2.0
Falo and Boston have the highest concentrations of foreign students	11 New YorkN:N.NewJersey-Iong Idand, WY-NJ-PA	26.1	36 PortlandVanocower-Baxeroton, OR-WA	12.0
relative to their populations, with more than 50 foreign students per 10,000 popu-	12 Seatle Traoma-Belleve, WA	25.6	37 Birmingham-Hover:AL	10.6
per 10000 population	13 Batimore Towson, MD	25.0	38 V Virsiniabeab-Norfolk-Newpoot News VA-NC	10.4
	14 Proxidence New Bedford-Fandiver Pr-MA	24.4	39 Nashulile-Pavidoon-Murfeestor-Franklin, TN	10.4
	15 Dallas-FortWorth-Arington, TX	24.2	40 Tampa-StPetersurg Clearwater FLI	10.2
	16 Pitusurgh, PA	22.5	${ }_{41}$ San Antonio, TX	9.0
	17 Hartord.WestlartfordEastHartord, CT	22.3	42 Indiampolis-Carmel, IN	8.5
	18 Sandiegoc.arrsbad-San Marcos CA	20.9	43 Memphis, TN-MS-AR	8.2
	19 Miami-Forthauderdele Pompano Beab, FL	20.3	44 Denver-Auroraziromfied, co	8.1
	20 Phildedephi-Camden-Wilmininton PA-NJ-DE-MD	19.9	45 New Orieans-Metairic-Kener, [AA	${ }^{71}$
	21 Salt Lake City, UT	19.0	46 Charotece Castonia-Conoor, NC.SC	${ }_{6.8}$
	22 Raleieb Cary, MC	18.6	47 Louisille Jefeferson County, KY-IN	${ }_{6.6}$
	23 Orlando-Kisimme, FL	16.5	48 Riveride-San Bemardino-Ontari, CA	${ }_{6} .0$
	24 Hoston-Sugar Land.Beytown, TX	16.0	49 Kansescity,Mo-ks	5.6
	25 Alanta-SandySprins Marieta, GA	15.7	${ }_{50}$ Sacramento-Arden-Arade -Roserill, CA	5.2
			51 Jacksonville, FL	2.7

FOREIGN TRAVEL

Percent of Population Reporting Having Traveled Outside the US, 2008

ore and more Americans are traveling outside the country, establishing	1 San Franciso-Oadanad.Feronot, CA	28.2	26 Providene New Eedoror-Pal River: Pr-MA	16.6
their own personal experiences and contacts with the rest of the world. Rising in-	2 SanJoseSumyvaleSantalang, CA	28.2	27 Tampa-StPetersburs Clearwater FL	16.6
comes, a falling real cost of long distance air travel and an increasingly diverse	3 Miami FortLauderderde Pompano Beach, FL	25.8	${ }^{28}$ Dallas-FortWorth-Aringaton, TX	16.5
population have helped fuel foreign travel. The marketing research firm SRDS	4 SanDiegocararsbad.San Maroos, CA	23.9	${ }^{29}$ SanAntoni, TX	16.0
in foreign travel in the past three years (SRDS/Equifax 2008).	5 Wastington-Aringtor-Alexadria, DC.VA-MD-WV	23.3		15.7
e big increases over the past several decades, a minority	6 New Yorke.New Jeserey.Iongisland, My-NJ.PA	22.6	31 Milvauke Waukesha-Westallis wr	15.0
report recent international travel-slightly fewer than one in six have taken a trip	7 Los Angedes_IongBeach-Santa An, CA	22.3	32 Detroit:Waren-Livoni, , MI	14.9
outside the country in the past few years in the typical metrooolitan area. San	8 Denver-Aurora Broomfeld, CO	21.3	${ }^{3} 3$ Raliegh-Cayy, Mc	14.9
Jose and San Francisco record the highest rate of foreign travel. Nearly a th	9 Satalle-Taoma-Beleme, WA	20.8	34 Ricimmon, VA	14.6
ir respective populations have traveled abroad recently, as well as more than a	10 Boston-Cambridge-Quiney MA-NH	20.1	${ }_{35}$ Jacksonville, FL	14.0
quarter of the residents of Miami. More than 20 percent of residents in San Diego,	11 Austin-Round Rock, TX	19.2	${ }_{36}$ Rochester, NY	13.9
Washington, New York, Los Angeles and Denver have experienced foreign trav-	12 Las Vegass Paraise, Nv	18.7	${ }^{37}$ Charlote-Castonia-Conocort, MC-SC	${ }^{13.7}$
and Birmingham, where only about one in ten residents has taken a foreign trip	${ }^{13}$ Sacramento-Arten-Arade Proserile, CA	18.7	${ }_{38}$ StL Louis, Mo.IL	${ }^{13.1}$
reeently.	14 Riverside-San Bemardino-Ontari, CA	18.4	${ }^{3} 9$ Cincimati-Middetown, OH-KY-IN	13.0
		18.2	40 Kanas City, MO-KS	12.9
	16 Chicago-Naperille -Joiet L -IN-WI	18.0	${ }^{41}$ Columbus OH	12.4
	${ }_{17}$ Portland-Vancower-Beaveroton, OR-WA	17.8	42 Neworieans:Metairie. Kener; [A	12.4
	18 Houson-Sugaranad.Baytown,TX	177	43 Indiampolis-Carmel, IN	11.9
	19 Orlando-Kisisimme, FL	17.6	44 Cleveland Elyria-Mentor, OH	11.7
	20 Baltimore-Towson,MD	17.5	45 Nashyille-Daiden-Muufresbor-Prankin, TN	11.7
	21 Hartord-Westlartord.EastHartord, CT	17.5	46 Oklahoma City, O	11.6
	22. Philadelphia-Camden-Wilmington,PA-NJ-DE-MD	17.4	47 Buffio-Niagara Fills, NY	11.4
	23 Salt takecity UT	${ }^{17.1}$	48 Memphis, TN-MS-AR	${ }^{11.1}$
	24. Nimmeaplis.straul-Blomington, Mn-wI	16.8	49 Pittsuush, PA	11.0
	25 PhoenixMeseas:octssale, AZ	16.7	50 Louisille Jefereson Count, KY-IN	10.8
			51 Biminingham-Hovera, AL	10.3

INTERNET CONNECTIVITY

Number of Internet Wi-Fi Hotspots per 1,000 population, 2011.

-ver the past decade, the Internet has matured from cutting edge techno-	1 Sanjose-Sumyvale-Santaclara, CA	46.9	26 Columbus OH	18.8
logical marvel to fundamental artery of business and personal interaction. Once	2 Seattle Tacoma-Eelene, WA	38.5	${ }_{27}$ Richmond, va	18.2
to stay connected. The Internet carries	3 PortandVVancowver.Beaveron, OR-WA	34.2	28 Bataimore-Towson,MD	18.2
every imaginable form of data from email communications and phone calls, to	4 San Francisoo-oakland.riremont, CA	32.7		17.9
more uses are popping up daily	5 Austin.Round Rook, TX	31.5	${ }^{30}$ Jacksonville, FL	17.9
We measure Internet connectivity based on ratio of Wi-Fi hotspots	6 Paleiegh-Cary, NC	28.3	31 Cleveland:ElyriaMentor; OH	17.6
the metropolitan area's population. We gathered data from the site JiWire.com,	7 Kanasa City, MO-Ks	26.0	32 Cincinati-Middetown, OH-KY-IN	
ich maintains a geocoded directory of free and commercial Wi-Fi hotspots	8 Denver-Aurora-Broonfeld, CO	25.6	33 Rochester, NY	16.6
(JiWire, 2011). For each metropolitan area, we counted the number of listed hot-	9 oklahoma City OK	24.9		16.2
spots within 20 miles of the center of the metropolitan area and divided that by	10 Mimeapolis:StPaul-Blominingon,MN-WI	24.8		15.9
the metropolitan area's population.	11 Orlando-Kisisimmee, FL	24.6	${ }_{36}$ Tampa-StPetessurg Clearwater:EL	15.9
The density of hotspots, relative to population, is greatest in San Jose, by	12 Saramento-Arden-Arade-Roserille, CA	24.0	${ }^{37}$ Atanta-SandSSpringss Marieta, GA	15.8
	13 Indiamapolis Carmel,IN	23.9	${ }_{38}$ Pitusbush, PA	5.2
in Miami. New York and Riverside.	14 Milvalke Waukesha-Westallis, wI	23.2	39 Bimingham.Hovera, AL	14.7
	15 Neworleans-Metairie. KemeriLA	23.2	40 Boston-Cambride-Quincy, MA-NH	14.3
	16 Las Vegas Paraise, NV	22.6	41 Dallas-FortWorth-Arington, TX	12.7
	${ }_{17}$ Satt Takecity UT	22.5	42 Chicago-Naperille-Joiety-I-T-WI	12.7
	18 Charlote-Castonia-Conocord, MC.SC	22.3	43 HoustonSSugar Land.Baytown, TX	12.2
	19 SanAntonio,TX	22.0		12.1
	20 Hartort-Westlartord.EastHartord, CT	22.0	45 LosAngeles-IongBeah-Santana, CA	11.9
	21 Louisille Jefferson Count, KY-IN	21.0	46 Memphis TN-MS-AR	11.9
	$22 \mathrm{SanDiegeg}-\mathrm{Carssad}$ San Marcos, CA	20.5	47 DetoitWarren-Iironi, MI	10.2
	23 Phonix-Mesa-Soctssale,AZ	20.3	48 Philadelphia-Camden-Wilminton, PA-NJ-DE-MD	9.9
	24 Wastington-Arington-Alexandia, DC.VA-MD-WV 2	20.2	49 MiamiFFortLauderdale Pompano Beach, FL	9.9
	25 Buffilo-Niagarafuls, NY	20.0	50 New York.N.NewJemey-LongIsand, NY-N.P.PA	9.8
			51 Riverside-SanBermardino-Ontario, CA	8.2

The Innovative City

As Thomas Edison famously observed, invention is 10 percent inspiration and 90 percent perspiration. Being smart doesn't necessarily translate into being innovative. A thousand years ago China's levels of education and scientific knowledge far exceeded those in Europe, but a society and a culture that was averse to change and innovation meant that this knowledge was not translated into economic progress (Landes, 1998).

The key factor propelling economic growth, according to the latest work in economics (New Growth Theory), is the generation of new ideas. The ability to create new ideas-everything from earth-shaking breakthroughs in genetic engineering and nanotechnology, to better ways to deliver packages or sew a shirt-is what drives prosperity. And despite proclamations by some that the earth is flat, the capability of generating new ideas is not evenly distributed across space. Certain places with strong aggregations of talent, clusters of innovative firms, key research institutions and a business and social climate conducive to change and risk-taking account for a disproportionate share of these valuable new ideas.

A variety of statistical analyses point to the importance of innovation and entrepreneurship. The number of small firms in a city is positively correlated with subsequent employment growth: a 10 percent increase in the number of businesses per worker is associated with a 9 percent increase in employment growth (E. L. Glaeser, Kerr, \& Ponzetto, 2010). Likewise, patenting is correlated with economic success. Metro areas with greater concentrations of a variety of high technology patents had both higher wages and faster wage growth than other regions (Huallacháin, 2011).

We measure innovation in several ways: patents, venture capital, new business formation and the number of small businesses.

PATENTS

Number of utility patents issued per 10,000 employees, 2009.

VENTURE CAPITAL

Amount of venture capital raised per 1,000 population, 2011.

Patent data measures the rate at which a metro area creates economi-	1 San Jose-SumyveleSantaclara, CA	83.5	26 Cleveland:Elyia-Mentor OH	5.3
cally valuable new ideas. Our data is drawn from tabulations by the U.S. Patent	in-RoundPook, Tx	31.9	${ }_{27}$ Baltimore Towson,MD	5.2
and Trademark Office and represents the number of patents issued to inven-	3 San Firancisco-oakland-Fremont, CA	27.7	28 Indiamapolis Carmelin	5.2
	4 Seatte-Traoma.Beleneve WA	24.7	29 Providene New Bedford-PalRiverfr-MA	5.1
Competitiveness, 2012).	5 Rochester, NY	22.1	30 Denver-Aurora Broomfeld, CO	4.6
Patenting is an important step in the process of securing the intellectual	6 Raleighc.Cary, NC	20.7	31 Wastington-Arininton-Alexandria, DC-VA-MD-WV	4.6
property rights associated with an idea. Of course, notall good ideas are patented,	7 PortlandVancowerer Beaveron, OR-WA	16.9	32 Buffiloniagra Fulls, NY	4.5
and many ideas that are patented turn out to be worthess, but patent activity is	8 SanDiegococarsod-San Maross CA	16.7	${ }^{3} 3$ StIouis. MO-II	4.1
a useful proxy for innovation. Research has shown that concentrations of	9 Boston-Cambride -quincy MA-NH	13.7	34 Miamif Fort Lauderdale Pompano Beach, FL	3.7
ts reflect the localized process of knowledge creation (Jaffe, Trachtenberg, \&	10 Minmeapois:St. Paul-Bloomington, MN-WI	10.5	35 KansasCity Mo-ks	3.6
Henderson, 1993).	11 Detoot:Waren-LIionia, MI	9.1	36 Columbus OH	3.4
There is more than a ten-fold variatio	12 LosAngeles-Iong Peach-Santa An, CA	${ }_{7} 7$	${ }_{37}$ OranandoKisisimmee, FL	3.4
80 patents per 10,000 workers followed by Austin and San Francisco averag	13 Hartord-Westlartford.EastHarford, CT	7.6	38 Tampa-StPetersburs Clearwater. FL	${ }^{3.0}$
more than 25 patents per 10,000 workers. The typical metropolitan area amo	14 Phoonix.Meses-Sotutsale, AZ	7.0	39 Memphis ,TN-MS-AR	2.9
the top 51 averages about 6.5 patents per 10,000 workers. Las Vegas, Virginia	15 Houston-Sugar Land Baytown, TX	6.8	40 Richmond, VA	2.7
Beach, New Orleans, Louissille and Jacksonville had the lowest levels of patent-	16 Priladeldhia-Camden-Wilminiton, PA-NJ-DE-MD	6.7	${ }^{41}$ Charolote-Castonia-Conoror, Mc.SC	2.7
ing, with fewer than two patents per 10,000 workers.	${ }_{17}$ S Saramento-Arden-Arade Roseserile, CA	6.1	42 Riverside-San Bemardino-Ontari, CA	2.7
	18 Pitusurgh, PA	6.1	43 San Antonio, TX	2.4
	19 Cincimat-Middetown, OH-KK-IN	5.9	44 Bimingham-Hovera, AL	2.2
	20 Dallas Fort Worth-Arington, TX	5.9	45 Okkhomacity OK	2.1
	21 Saltrake City UT	5.8	46 Naskrille-Paxidson-MuffeesboroFranklin, TN	2.0
	22 Alantas:Sand Springs:Marietta GA	5.5	${ }_{47}$ Las Vegasararaise, NV	1.8
		5.4	48 Virginia Beach-Nofolkl:Newport News VA- NC	1.8
		5.4	49 New Orleans:Metexire-Kener_LA	1.8
	25 Milwalke Waukesha-Westallis, WI	5.3	${ }_{50} 5$ Louisille Jefereson Count, KY-IN	1.7
			51 Jacksonille, FL	1.5

enture capital-early stage equity investments in new startups and fast	1 San Jose-Sunnvalesanta Clar, CA	2,499	${ }_{26}$ Houston-Sugaraland-Battown, TX	${ }_{4}$
growing companies-play a vital role in promoting the development of new	San Francisco-oadand.Fremont, CA	1,641	27 Kansasity, MO-K8	${ }^{33}$
chnologies and new industries. Venture capital has driven U.S. leadership	3 Boston-Cambride - -uincy, MA- NH	634	28 Sacramento-Arden-Arade Poservile, CA	28
in electronics, software and biotechnology. Because venture capitalists hedge	4 Ausin-Round Rock, TX	${ }^{371}$	29 Tampa-StPeessburg Clearwater: FL	28
	5 SanDiegoc.Carsbad-San Maross CA	281	30 Richmond VA	24
talists investing their funds in businesses in their region. As a result, the local	6 Raleieb-Cayy,	249	31 Providene -New Bediorrer-alliver, PL-MA	24
availability of venture capital is an important determinant-and indicator-of	7 LosAngedes-IongBeah.Santa An, CA	142	32 Orlando-Kisisimmee, FL	24
an innovative city.	8 Seatte-Tzaomar.alelene, WA	142	${ }_{3} 3$ Miami:FortrauderdalePompano Beah, FL	21
For each metropolitan area, we tabulate the amount of venture capital in-	9 New York.N.NewJeserey-IongIsand, My-N.-PA	139	34 Oklahoma City, K	21
vestment announced in the past year as part of the quarterly Moneytree survey	10 Salteakec City UT	${ }^{137}$	35 Cincimati-Middetown,OH-KX-IN	21
(National Venture Capital Association \& Pricewaterhousecoopers, 2012).	11 Denver-Aurorabiromfeld, CO	115	${ }_{36}$ SanAntomi, TX	${ }^{20}$
Venture capital is highly concentrated in relatively few metropolitan ar-	12 Washington-Arington-Alexandria, DC-VA-MD-WV	105	${ }_{37}{ }^{\text {Jacksonvill, FL }}$	20
	13 Indianapolis Carmel, IN	101	38 HartordWeet Hatford EastHartord, CT	${ }^{17}$
amount with nearly $\$ 2,500$ per 1,000 workers. Other leading metropolitan areas	14 Portand.Vancowver-Beaveron, OR-WA	101	${ }^{\text {3 }}$ Poochester NY	15
include high tech centers like San Francisco, Boston, Austin and San Diego-	${ }^{15}$ Dallas-FortWorth-Arington, TX	82	${ }^{40}$ New Orieans-Metarie-Kenmer, [A	14
all with more than $\$ 250$ of venture capital invested per 1,000 workers. Virginia	16 Mimmapolis.StPaul-Blomington,MN-WI	79	41 Buffilo-Ningarafuls, , YY	11
Beach and Riverside reported the smallest amounts of venture capital invest-	${ }_{17}$ Chicago-Naperville -Joiet T -TN-WI	${ }_{7}$	42 Columbus OH	10
ment in the past year with approximately $\$ 1$ per 1,000 workers.	18 Atlanta-SnadySpinins-Marieta, GA	65	43 Detroit-Waren-İivoni, MI	10
	19 Philadel phia-Camden-Wilininton PA-NJ.DE-MD	61	44 Milwalke Waukesa-Westallis , WI	9
	20 Pittsurus, PA	60	45 Memphis, TN-MS-AR	7
	21. Cleveland:Elyia-Mentor; OH	59	46 Louisille Jefereson County.KY-IN	7
	22 Eatimore Towson,ND	56	47 Charolte Castoria-Conoor, NC.SC	5
	${ }_{2} 3$ Nashrille Pavidison-Murfeestor-FFrankin, TN	56	48 Las Vegesararaise, NV	4
	24 PhoenixMeseas-Sotstale, AZ	46	49 Birmingham.Hoverat	3
	${ }_{25}$ StIouis, MO-.[I	44	${ }^{50} 0$ Riverside-San Bemardino-Ontari, CA	1
			51 Virgmini Beach-Noroflk-NewportNews VA-NC	1

ENTREPRENEURSHIP

Percent of the adult population who are self-employed, 2010

roader measure of the innovative potential of a region is the number of	1 Miami-FortLauderdale-Pompano Beach,FL	15.6\%	26 Raleigh-Cayy, ${ }^{\text {ch }}$	9\%
persons who own their own businesses and work for themselves. Only a tiny frac-	2 SanFriandsoo-adkand.Fremont CA	13.2\%	${ }_{27}$ Bimingham:Hovere, AL	9.8\%
tion of firms ever have reason to patent their ideas or need formal venture capital.	3 San Diegocararspad.San Maroos CA	12.6\%	${ }_{28}$ SanA Antoni, TX	\%
Communities in which it is s relatively easy to start new businesses, or where there	4 PortlandVanocower-Baverton, OR-WA	12.6\%	29 Saltrakecity UT	9.7\%
	5 Denver-Aurorabroomfed, co	12.1\%	30 Kansascity Mo-ks	8\%\%
We measure the degree of sel-employment in each metropolitan area using	6 Neworlens:Melairie Kenmer_LA	11.9\%	31 Wassington-Atiniton-Alexandia, DC.VA-MD.wV	9
Census data on the number of persons who report they were self-employed ac-	7 Tampast. Petersburs. Clearwater. FL	117\%	32 Chicago-Napervile-Joliet, IT-IN-WI	\%
cording to the 2008 through 2010 American Community Survess (Bureau of the	8 Nashrille Pavideon-Murfeestor-FTrankin, TN	11.6\%	33 Indiampolis Carmel,IN	9.1\%
Census, 2008-2010).	9 Riverside-San Bemardino-Ontario, CA	11.6\%	34 Cleveland Ely	9.1\%
Self-emploved workers make up more than 10 percent of the workforce	10 Saeramento-Areen-Aracade-Poserille, CA	11.5\%	${ }_{35}$ Prildedephai-Camden-Wilminton, PA-NJ-DE-MD	\%
in the typical large metropolitan area in the United States. In the leading area,	11 Okkhomacity, O	11.5\%	36 HartordW Westlartord.EastHartord, CT	\%
Miami-Fort Lauderdale, about 15 percent are self-employed. Areas with the	12 AustinRPound Rook, TX	11.5\%	${ }^{37}$ DetorotWarten-Iivonia, , MI	9.0\%
of all workers were self-employed.	${ }^{13}$ LosAngedes-IongBeah-Santana, CA	11.3\%	${ }^{38}$ Rochester, NY	9\%
	14 Sattle Traoma.-Elenew, WA	11.2\%	${ }^{39} \mathrm{St}$ Stouis, MO-IIL	8.9\%
	15 Orlando-Kisisimee, FL	11.2\%	40 Balimore Towson,MD	8.8\%
	16 Alanta-SandySprins-Marietta, GA	111\%	${ }_{41}$ Pittsursh, PA	8.8\%
	${ }^{17}$ Phoenix-Meeas.Sontstale, AZ	11.0\%	42 Richmond VA	8.7\%
	18 Houston-Susaratand-Baytow, TX	10.9\%		8.7\%
		10.7\%	44 Columbus OH	8.7\%
	20 Boston-Cambidege -quiney, MAA NH	10.6\%	45 Louisille Jefferson Count, KY-IN	8.6\%
	${ }_{21}$ Sanjoses-SumpraleSantalara, CA	10.4\%	46 Cincimati-Middetown,OH-KK-IN	8.6\%
	22 Jacksonvill, FL	10.4\%	${ }_{47}$ Las Vegasararaise, NV	8.6\%
	23 Charotete Castonia-Conoord, NC.SC	10.1\%	48 Memplis, TN-MS-AR	8.2\%
	${ }^{24}$ Dallas.FortWorth-Arington, TX	10.1\%	49 Viriginia Beach-Norfokk-Newport News V V - NC	8.0\%
	${ }^{25}$ Mimmendis.st. Paul-Blomington, MN-WI	10.\%	50 Milwalke Waukena-Wets Allis WI	7.9\%
			51 Buffilo-Niagarafalls, NY	7.9\%

SMALL BUSINESSES

Number of firms with fewer than 20 employees per 1,000 population, 2009.

Another indicator of innovation is the number of small businesses in a re-	1 Miami FortIauderdele Pompano Baeab, FL	27.5	26 New Orieans:Metairie-Kener_LA	21.1
gion. Studies have shown that in many industries, particularly those that are	2 Denver-Auroratromfed, co	5.2	${ }^{27}$ Kansascity MO-kS	21.0
most innovative and make greatest use of skilled labor, smaller frms tend to	3 New York.N.NewJerey-Longisian, MY-NJ.PA	24.9	28 San Jose-Sunnvyle Santalars, CA	20.9
more innovative than their larger counterparts (Acs \& Audretsch, 198)	4 Seatte-Traoma-Belerue WA	24.6	29 PhiladedhiaiCamanden-Wilmington, PA-NJ-DE-MD	20.8
pand risk taking in a community. Places with many small busines	5 PortlandVancowver Beaveron, OR-WA	24.3	30 Milwauke-Waukesha-Wetallis wr	20.7
	6 Saltalate City UT	24.1	31 Balimore Towson, MD	20.6
Our measure, drawn from statistics compiled by the Census Sureau, reports	7 SanFraniscoo.oakland-Fremont, CA	23.5	32 Hartord-West HartordeastHartord, CT	20.5
number of businesses with fewer than 20 employes per 1,000 population in	8 Minneapdis:StPaul-Blominitoto,MN-WI	23.3	33 Indianapolis:Carmel, IN	20.3
2009 (Bureau of the Census, 2009).	9 Baston-Cambridee -axincy, MA-NH	22.9	34 Nashville-Daridoon-Muufresboro-Frankin, TN	20.0
In the typical metropolitan area, there are about 21 businesses with fewer	10 Okahomacity, OK	22.5	${ }_{35}$ Austin-Round Rock, TX	19.9
than 20 employes per 1,000 population. Small businesses are proportionately	11 Orlando-Kisisimmee, FL	22.4	${ }_{36}$ Bufflo-Niegara Fills, NY	19.9
st important in Miami, which has nearly 30 per 1,000 population. Small busi-	12 LosAngeles-IongSeach-Santa An, CA	22.4	${ }^{37}$ DetroitWarren-Livoni, MI	19.
		22.4	${ }_{38}$ Bimmingham-Hoover:AL	19.4
	14 Jacksonvill, FL	22.1	39 Louisille Jefereson County,KY-IN	19.3
	15 Tampa-StPetersburs. Clearwaer: FL	21.9	40 Virginiabeah-Norfolk-Newoort News, VA-NC	19.2
	16 Raleigh-Cay, Mc	21.5	41 Rochester,NY	19.0
	17 Cleveland:ElyriaMentor OH	21.5	42 Dallas-FortWorth-Arington, TX	18.3
	18 Chicaso-Naperille -Joiet [--IN-WI	21.5	43 Cineimati-Middetown,OH-KY-IN	18.2
	19 Charote-Castonia-Conoorl, NC.SC	21.4	44 Sacramento-Arem-Arade-Poserille, CA	18.1
	${ }^{20}$ Sandiegoc-Carsbad.San Maroos, CA	21.3	45 Phoenix.Meea-Soctsade, Az	18.0
	21.15 St.ouis, MO-IL	21.3	46 Columbus OH	1777
	22 Pittsurgh PA	21.3	47 Las Vegass Paraise, Nv	17.3
	23 Washington-Ariniston-Alexandria, DC.VA-ND.WV	21.3	48 Houson-Sugar Land.Baytown, TX	${ }^{17.1}$
	24 Atlantas:SandSSpinins-Marieta, GA	21.2	49 Memphis, TN-MS-AR	16.1
	25 Richmond, VA	21.2	50 SanAmtomi, TX	15.8
			51 Riveriside-San Bemaratino-Ontario, CA	13.2

The Talented City

In a knowledge-based economy, the skills and abilities of a region's residents have become the decisive factor in shaping economic prosperity. There is a strong and Growing correlation between a person's level of income and a person's amount of education. Over the past decade, those with higher levels of educational attainment have, on average, seen their real incomes rise. Those with lower levels of education have seen their incomes fall. What is true for individuals is also true for cities. The most well-educated enioy the highest levels of income. Statistically, variations in the level of adult college attainment explain 58 percent of the variation in per capita incomes across metropolitan areas. As this chart illustrates, the correlation is very strong.

collegeattainment

This data confirms a number of studies that underscore the importance of education to urban suceess. Paul Gottlieb and Michael Fogarty found that cities with the highest levels of college attainment saw their incomes rise almost twice as much during the 1990s as the cities with the lowest levels of college attainment (Gottlieb \& Fogarty, 2003). Bob Weissbourd and his colleagues concluded, after an extensive statistical analysis of urban growth in the past decade, that the percentage of adults with college degrees was highly correlated with population, income and wage growth at the city and metropolitan areal level (Weissbourd, 2004).

The Great Recession has underscored the importance of talent to metropolitan economic success. Better-educated metropolitan areas saw smaller increases in unemployment in the depths of the recession, and most of the job growth in the recovery has been among better-educated workeArs. In 2010, metropolitan areas with an above average education had lower unemployment rates not only for those with a college education, but also for those with lower levels of education (E. Glaeser, 2010). As the recovery proceeded in 2011 , the number of jobs for persons with a high school diploma or less education continued to decline, and all of the net increase in jobs has been for people with a tleast some college education. The greatest job growth has been for those with a college degree (Rampell, 2012).

We use a variety of measures to assess the talent level of the local population. These include college attainment, the presence of creative professionals, concentration of young, well-educated workers and the extent to which well-educated workers are in industries that export products from the metropolitan region.

COLLEGE ATTAINMENT

Percentage of the metropolitan population 25 years old or older that have completed a four-year college degree, 2010

Ollege attainment is an indicator of the eevel of skill or human capital of an	1 Eoston-Cambride - Quiney, MA-NH	54.3\%	26 SanDiegoc-Carsbad.San Maroos, CA	33.9\%
as's population. As the nation's economy has become increasingly knowledge-	2 Wassington-Atringon-Alexandia, DC.VA:MD-wV	48.6\%	${ }^{27}$ Providence-NewBedford-Falliver RR-MA	33.8\%
based, the availability of adequately skilled workers is a key factor in determining	3 San Fianciso-Oadand.-Fremont, CA	48.2\%	28 Indianpolis-Cammel IN	33.7\%
	4 San JoseSummyle Santalary, CA	48.2\%	${ }^{29}$ Cincimati-Middetown,OH.KY-IN	33.5\%
		444\%	30 Nasasvill -Davideon-Muffesboro-Prankiin, TN	33.3\%
The fraction of the adult population with a four-year degree or higher level	6 Minneapolis:StPaul-Blomington, MN-WI	43.2\%	31 Los Angeles.IongBeah-Santa Ana, CA	33.1\%
education varies from more than one-half to less than a fifth, with the typical	7 Raleigh. Cary, CC	42.5\%	32 Cleveland:Elviai.Mentor OH	32.9\%
metropolitan area having an adult college attainment rate of about 34 percent.	8 Pituburgh PA	40.5\%	33 Bimingham.Hoveras AL	32.4%
Boston has the highest rate of college attainment (54.3 percent). In San Jose, San	9 Chicago-Napervile-Joliet.[-1N-WI	40.1\%	34 Louisille Jeferson County,KY-IN	31.5\%
Francisco and Washington, four-year college attainment rates exceed 48 percent.	10 Denver-Auroraziromfid, Co	40.0\%	35 New Orleans-Metairie-Kener:IA	31.1\%
	${ }^{11}$ HartiordWest Hartord-Eastharfort, CT	39.9\%	36 DalassFartWorth-Arington, TX	30.5\%
large metropoitan areas are Riverside and Las Vegas.	12 Austin-PoundRock, TX	3.9\%	${ }_{37}$ DetroitWarren-Livoni, MI	30.2\%
	13 Buffio-Niagara Fills, NY	39.9\%	38 Orlando-Kisisimmee, FL	29.9\%
	14 Prildadphiai-Camden-Wilministon, PA-NJ.DE-MD	39.2\%	33 Sacramento-Arten-Arade -Poserill, CA	29.2\%
	15 Batimore Towson, MD	39.2\%	40 Okkhomacity, O	28.7\%
	16 Sattle Traoma Falevene WA	38.5\%	41 Virginiabeah-Norfolk-NewportNews VA-NC	28.7\%
	${ }^{17}$ Columbus, OH	38.0\%	42 Tampa-StPetessburg Clearwater.FL	28.6\%
	18 Rochester, NY	37.3\%	43 Miami FortLauderdale Pompano Beach, FL	277\%\%
	19 Kanasc City Mo-ks	36.6\%	44 Salt takecity UT	27.6\%
	${ }^{20}$ Richmond, VA	35.8\%	45 Houston-SUuaratand-Baytom, TX	27.6\%
	${ }^{21}$ Charotote-Castonia-Conorord, NC.SC	35.8\%	${ }_{46}$ Jacksonville, FL	26.9\%
	22 Milwauke Waukeha-Westallis, WI	35.4\%	${ }_{47} \mathrm{Memphis}$ TN-MS-AR	26.6\%
	${ }_{23}$ StLouis Mo-IL $^{\text {a }}$	35.4\%	${ }^{48}$ San Antonio, TX	25.7\%
	24 Atantas:Sand SSprins:Marietra, GA	34.4\%	${ }_{49}$ Phoonix-Mesas:Sotssade, AZ	25.3\%
	25 PortlandVancowver.Beaveroto, OR-WA	34.1\%	50 Las Vegasararaise, NV	20.1\%
			Riverside:SanBeernardino-Ontari, CA	18.1\%

CREATIVE PROFESSIONALS

Percentage of workers employed as Mathematicians, Scientists, Artists, Engineers, Architects and Designers, 2010.

Creative professionals are persons who regularly have wide discretion	1 Sanjose-Sumpvale-Santaclara, CA	7.6\%	26 Milivalue-Waukesha-Wetallis WI	3.6\%
in their jobs to use accumulated knowledge to develop, design and deliver new	2 San Frandisoo-addand.Fremont CA	5.6\%	27 StLouis, MO-IL	3.6\%
products and services. They are generally highly educated. As Richard Florida has	3 Wasdingtor-Arington-Alexandia, DC-VA-MD-WV	5.5\%	${ }_{28}$ Neworiean-Metairie: Kemer:LA	3.6\%
argued, this group of workers plays a disproportionately important role in driving	4 Sandiego-Carsbad.San Maroos, CA	5.3\%	${ }^{29}$ Salt Take City UT	3.5\%
	5 Detroit-Waren-Livoni, MI	5.3\%	30 Cleverand.Elyria-Mentor, OH	3.5\%
tabulate occo	6 Seatte Traoma.aleleve, WA	5.1\%	31 Phoenix.Mesas:Sotssade, AZ	3.5\%
2008-2010. This measure counts the percentage ofall workers in the metropolitan	7 Boston-Cambridge -auiney, MA -NH	5.1\%	32 Aluant-Sandy Springe-Marieta, GA	3.5\%
area who are employed in a series of creative professional occupations. These	8 Ralieds-Cay, MC	4.9\%	${ }^{3} 3$ Columbus OH	3.5\%
occupational categries are: mathematicians, architects, engineers, life and	9 Austin-Round Rock, TX	4.9\%	${ }^{34}$ Charlote-Castoni-Conorrd, NC:SC	3.4\%
physical scientists, art and design workers and entertainers (Bureau of the	10 Portanad-Vancowver:Beaveron, OR-WA	4.8\%	${ }_{35}$ Chicago-Naperille-Joliet,I-IN-WI	3.4\%
sus, 2008-2010).	11 Denver-Aurora Bromfeld, CO	4.85	${ }_{36}$ Buffilo -Nigagaralls, NY	3.3\%
In the fifty-one largest metropolitan areas, about 3.9 percent of workers are	12 Baltimore Towson, MD	4.5\%	${ }_{37} \mathrm{Kansas}$ CityMo-ks	3.3\%
employment as a fraction of the workforce (76 percent) Memphis and Miami	${ }_{13}$ Houston-Sugaraland-Battown, TX	4.5\%	38 OkahomaCity, OK	39\%
have the smallest fraction of creative professionals-less than three percent.	14 Saramento-Arden-Arade-Roserill, CA	4.4%	39 Ricmmond, VA	3.3\%
	15 HartordWest Hartord.EastHartord, CT	4.2\%	40 Dallas-FortWorth-Arington, TX	3.3\%
	16 Minneapdis:StPaul-Blomington, MN-WI	4.0\%	${ }_{41}$ Jacksonville, FL	${ }^{3.2 \%}$
	${ }^{17}$ Rochester, NY	4.0\%	42 Tampa-StPetersburs Clearwater FL	3.1\%
	18 Cincimati-Middelown,OH-KK-IN	4.0\%		3.\%
	19 Indiampolis-Carmel, IN	4.0\%	44 Naskrville-Paxideon-Muffeesboro-Franklin, TN	3.0\%
		3.9\%	45 Las Vegasararaise, NV	3.0\%
	21 Pitsourgh, PA	3.9\%	46 Bimingham-HoveraL	2.9\%
		3.8\%	${ }^{47}$ San Antonio, TX	2.8\%
	23 Priladelhhia-Camden-Wilmington, PA-NJ-PE-ND	3.8\%	${ }^{48}$ Louisislle Jefereson Countr, KY-IN	2.88
	${ }_{24}$ LosAngeles:IongBeab-Santana, CA	3.7\%	${ }^{49}$ Miami:FortLauderdelePompano Beach, FL	2.7\%
	25 Orlando-Kisisimee, FL	3.7\%	50 Riverside SanBernardio-Ontari, CA	2.6\%
			51 Memphis TN-MS AR	2.4\%

YOUNG \& RESTLESS

Percentage of the metropolitan population that is 25 to 34 years old and has completed at least a four-year college degree, 2010.

Young, well-educated workers are among the most mobile people in our	1 Wasaingon-Arington-Alexandia, DC.VA.MD.WV	7.6\%	26 Pitsoush, PA	4.6%
nation--i.e. most likely to move across state lines. Their mobility makes them an	2 Boston-Cambride -uincy; MA-NH	7.3\%	27 Hartord-WestHartord-EastHartort, CT	\% $\%$
ity.Pl	3 San Francisoo-oakland.-Tremont, CA	${ }^{7} 36$	28 Dalas-FortWorth-Arington, TX	4.5\%
lots of well-educated young workers today are likely to have lots of well-educated	4 SanJose-Sumsvalesantalar, CA	7.2\%	29 Ricmond, VA	4.5\%
young and restless is the percentage of the metropolitan population that is 25 to	5 Austin.Round Rook, TX	6.7\%	30 Bimingham-Hoover, AL	4.4%
34 years old and has completed at least four-year college degree. These data are	6 Raleidh-Cayy, NC	6.9\%	${ }^{31}$ Poochester, NY	4.4\%
drawn from our analysis the American Community Survey for the 2008 through		6.3\%	32 Cincimati-Middetown, OH-KY-IN	4.3\%
2010 (Bureau of the Census, 2008-2010).	8 Minneapolis:StPaul.Blomington, MN-WI	6.2\%	${ }^{3} 3$ Buffilo-Niagarafuls, NY	4.3\%
College-educated 25 to 34 year olds make up about 5 percent of the work-	9 Seatle Traoma Belemene WA	5.9\%	34 New Orieans-Metairie-Kemer, [A	4.2\%
force in the typical large metropolitan area-but there are significant variations	10 Denver-Auroratiromfid, co	5.9\%	35 Houston-Susara Land-Raytown, TX	4.1\%
across metropolitan areas. Washington, San Francisco, San Jose and Boston all	11 Columbus OH	5.8\%	${ }_{36}$ Okahoma City, OK	4.1\%
	12 Chicaso-Naperille.odiet, I-TN-WI	5.8\%	${ }^{37}$ Louisilile Jefereson Count, KY-IV	4.1\%
many college-educated young adults as a fraction of their population.	${ }^{13}$ Charotote Castonia.Conocor, , NC.SC	5.4\%	38 Orlando-Kisisimmee,FL	4.0\%
	14 Batimore Towson, MD	5.4\%	39 Saramento-Arden-Arade -Roserill, CA	4.0\%
	${ }_{15}$ San Diegog-Carshad-San Maroos, CA	5.3\%	40 Providene - New Bedtord-Fal River: R1-MA	4.0\%
	16 Portland-Vancowver-Beaveroto, OR-WA	5.2\%	41 Cleveland:ElyriaMentor, OH	3.9\%
	17 Atantas:SandSSprings-Marieta, GA	5.2\%	42 Phonix.Mesas:octssale,AZ	3.8\%
	18 Kansas City,Mo-ks	5.2\%	43 Virginia Bead-Norfolk-Newport News, VA.NC	3.7\%
	19 Phildedphia-Camden-Wilminton, PA.NJ.D.-MD	5.1\%	44 Miami:FortIanderdale-Pompano Beach,FL	3.7\%
	20 Nashville Paxidson-Muffresoboro-Frankin, TT	5.1\%	45 DetorotWarren-Iivoni, MI	3.6\%
	21 Indianapolis Carmel, IV	5.0\%	46 Memphis TN-MS-AR	3.6\%
	22 Saltrake City UT	5.0\%	${ }_{47}$ Jacksonville, FL	3.5\%
	${ }_{23}$ LosAngeles-Iongeaeah-Santa An, CA	4.8\%	${ }_{48}$ San Antonio, TX	3.5\%
	24 Milwalke Waukesha-Westalis wi	4.7\%	49 TampaS.STetersburs Clearwater: FL	3.4\%
	${ }_{25}$ StLouis Mo-IL	4.7\%	50 Las Vegasararaise, NV	3.2\%
			51 Riverside-San Bemardino-Ontari, CA	2.4\%

TRADED SECTOR TALENT

Percentage of metropolitan workers that have a college degree and are employed in private sector businesses excluding health care and education, 2010.

raded sector talent is college-educated workers who work in parts of the	1 Sanjoses-SumyvaleSanta Clara,	46.6\%	Uas-FortWo	29.4\%
ctors of the eco	2 Wastington-Atringon-Alexandria, DC.VA-MD-WV	447\%	${ }_{27} 7$ Pitstourgh, PA	\%
defined as the percentage of all workers outside of health services, education and	Soston-Cambridge-Quiney, MA -NH	444\%	, Mo-LI	\%
government who have a 4-year degree or higher level of education.	4 San Francicoo-oakland.Fremont, CA	40.8\%	29 Indiamapolis-Camel, IN	9\%
and international competition, and they exist primarily to serve the needs of	5 Ralielh Cayy, Cl	40.2\%	30 Milvalke Waukesa-Wetstlis wi	\%
the region's residents. In many jobs, a college education is a requirement of em-	6 AustinRound Rook, TX	38.0\%	31 Naskrille-Pavideon-Muffeestor-FFranklin, TN	0\%
for regulatory or other reasons--nearly all teachers, most medical	7 Denver-Aurora Bromfeld, CO	377\%	32 Miami:FortLauderde Pompano Baech, FL	27.4\%
professionals and a disproportionate share of government workers have four-		37.3\%	${ }_{3} 3$ Detoit-Waren-Livonie, MI	2.9\%
ear and higher degrees. Examining the share of workers with a college degree	9 Minmeapolis:StPaul-Bloomington,MN-WI	37.1%	34 Houston-Susaranand-Battom, TX	26.2\%
excluding those working for government, education and health care show the ex-	10 Sartle TTaoma-Belleve, WA	35.6\%	${ }_{35}$ Phoenix.Mesa-Soctssale, AZ	2\%
tent to which the remaining segments of the private economy make use of highly	11 Chiago-Naperville Jodiet H-IN-WI	33.78	36 Buffio-Niagarafuls, NY	\%
skilled workers. Using public use microsample data from the 2008 through 2010	12 HartordW Westhartordeasthartord, CT	33.4\%	${ }_{37}$ Oflando-Kisisimmee, FL	\%
en of ollese educated workers ased 25 and older (Pusslesetal 2011)	13 Atantas:SandSSpinses.Marieta, GA	33.3\%	38 Sacramento-Arden-Arade Roserille, CA	\%
The college attainmentr rate of workers in sectors outside health, education	${ }^{14}$ Sandiegoc-Carsbad-San Maroos CA	33.2\%	${ }^{3} 9$ Cleveland:Elyria-Mentor; OH	25.5\%
and government is about 29.5 percent in the typical large metropolitan area in the	${ }^{15}$ Columbus OH	33.1\%	40 Salt Iake city UT	25.4\%
United States. The leading areas include Boston, Raleigh, San Francisco, San Jose	16 Priladelphia-Camden-Wilmington, PA.N.J.DE.MD	32.4\%	41 Louisille Jefereson County,KY-IN	25.0\%
and Washington, with at least two-fifths of all workers in these sectors having a	17 Kansas city Mo-ks	32.3\%	42 Okahoma City, O	24.4\%
college degree. The lowestlevels of college attainment among traded sector	18 Baltimore Towson, MD	32.2\%	${ }_{43}$ Jacksonville, FL	24.4\%
ers are recorded in Las Vegas and Riverside, where college attainment for traded	19 Portanad-Vancowver-Beaverton, OR-WA	31.78	44 Tampa-StPetersurs Clearwaer: FL	\%
	20 Biminigham-Hover, AL	31.2\%	${ }_{45}$ Memphis, TN-MS-AR	23.6\%
	21 Richmond VA	30.9\%	46 Providene - New Bedtord-Fal River, Rr-MA	23.4\%
	22 Rochester,NY	29.8\%	${ }^{47}$ Virsinia Beah-Norfolk-Nevport News, VA-NC	23.3\%
	${ }_{23} 3$ Charotote-Castonia-Conoort, NC.SC	29.8\%	${ }_{48}$ SanAmtomi, TX	22.0\%
	24 LosAngeles-IongBeah-Santa An, CA	29.7\%	49 New Orieans-Metairie-Kemer [iA	21.6\%
	25 Cincimati-Middetown, OH-KX-IN	29.7\%	50 Las Vegesararaise, NV	55\%
			51 Riverside-SanBernarino-Ontari, CA	15.4\%

INTERNATIONAL TALENT

Percentage of metropolitan population 25 years and older that have completed a four year college degree and were born outside the United States, 2010

national talent is persons with a four-year degree who were born	ra,	49.6\%	26 PortlandVancower-Bavereton, OR-WA	12.8\%
did the United States. We compute the international talent ratio for each	2 Miami-FortIauderdale:Pompano Eeach, FL	40.5\%	27 Jacksonvill, FL	12.3\%
metropolitan area as the percentage of metropolitan population 25 years and	Angeses-ongBead.S	36.6\%	28 San Antomio, TX	11.5\%
older that have completed a collese degree and who were born outside the United	4 San Francisoo-Oadand.-Fremont, CA	31.8\%	29 Charolote Castonia-Conoort, NC.SC	1.5\%
States.		30.7\%	${ }^{30}$ Salt akeceity UT	10.6\%
In an increasingly global economy, international talent plays an especially	6 Riveside-SanBermardino-Ontari, CA	26.2%	us OH	1.0\%
important role. The ability to attract the best workers from around the world has	7 Lasevegas. Paradies, NV	25.3\%	32 Providence New Bediord.-Fal River. Pi-MA	10.0\%
historically been an important contributor to United States technological leader-	8 SanDiego-Carsbad-SanMarros CA	24.4	33 Cleveland:Elyiai-Mentor; OH	9.7\%
ship and economic growth. Places that can attract talented workers from other	9 Houston-Sugar Lend-Battown, TX	24.1\%	34 Virsinaiaeahh-Norfokk-Newoot News VA-NC	9.7\%
nations can grow their economies more easily than those who drav	10 Wastington-Atingon-Alexan	23.5\%	35 Minneapolis:StPaul-Bloominton, MN-W	9.7\%
domestic pool of talent. Moreover, the greater diversity of experience of workers	11 Seatte-Tacoma.Belene, WA	20.0\%	36 Denver-Aurora:Bromfeld, co	9.7\%
from outside the U.S. may help U.S. firms to be more competitive. This interna-	Orlando-Kisisimee, FL	19.5\%	Rochester, NY	8.9\%
persons who may have moved to the US. to get a college education or a job as	${ }_{13}$ Chicago-Naperville Joliet [--IN-WI	19.2	38 Richmond, VA	8.8\%
ng adult, as well as those who may have move to the U.S. as children and been	cramento-Arten-Arcade. Posesille, CA	18.8\%	-Niaga	8.6\%
educated entirely in the U.S. These data were computed based on data from the	15 Boston-Cambride- -uincy, MA - NH	178\%	40 Milwalke Waukesa-Wetallis wI	8.2\%
public use microsample of the Ameri	16 Dallas-FortWorth-Arington, TX	16.9\%	41 New Orieans:Meteairie-Kener:IA	8.1\%
through 2010 (Ruggles etal, 2011).	${ }_{17}$ Atanatasand Springse.Marieta, GA	16.4\%	42 Oklahoma City, O	8.1\%
Approximately 15 percent of the college-educated workers in the typi-	18 Tampa-Stetetersurs Clearwater FL	15.3\%	43 Memphis TN -MS-AR	77\%\%
cal large metropolitan area were born outside the United States, but there are	19 DetroitWarren-Livoni, MI	14.8	no-IL	7.5\%
large variations among metropolitan areas. In San Jose, nearly half of all college	Ealimore Towson, MD	14.4\%	45 Cincimati-Middetomm, OH-Kx-IN	7.5\%
Miami and about 35 percent of college educated workers in Los Angeles and San	21 Austin-Foundrook, TX	14.1	46 Naskrille-Pavidon-Murfeesboro-Fanklin, TN	7.5\%
Francisco. Larger coastal economies tend to have higher rates of foreign-born	22 HattordWestHattord.EastHartord, CT	14.0\%	47 Indiamapolis:Carmel, IN	7.3\%
talent than smaller more in ind cities. The lowest rates foreign-bo	23 Phildedphia-Camden-Wilmington, PA-NJ-DE	13.8\%	48 Pitsturush PA	6.8\%
cated workers are in Birmingham, Louisville, Kansas City, and Pittsburgh, where	24 Phonix-Mesa-Soctssale, AZ	13.5\%	49 Kanasacity Mo-ks	6.5\%
nearly 15 of every 16 college educated adults was born in the U.S.	${ }_{25}$ Raleigh-Cary, NC	13.1\%	50 Louisille Jefferson County KY-IN	6.5\%
			51 Bimmingham-Hoover.AL	5.6\%

Your Distinctive City

One of the paradoxes of globalization is that as the globe has become more closely connected by commerce, communication and entertainment, the distinctive differences that distinguished one place from another have been muted by shared global commodities and multinational brands. Despite, or perhaps because of, the increasing sameness associated with globalization, the remaining local distinctiveness plays an increasingly important economic role. As Jane Jacobs said, "The greatest asset that a city or a city neighborhood can have is something that's different from every other place" (Jacobs, 2006).

Local differences in tastes can give rise to new ideas and new products. The insatiable fascination of Japanese and Korean consumers for ever smaller, more capable electronic devices (cameras, phones, computers) gave rise to clever and innovative new products that eventually paved the way for worldwide distribution of products with similar capabilities (Porter, 1990).

The insights and original ideas behind many breakthrough business models emerged from practical experience gained in a local marketplace. In the 1960s, at a time when it was rare for most adults to exercise publicly, many people in Eugene, Oregon, took up the hobby
of jogging and running. A small company formed to sell them imported sneakers. That company eventually became Nike, the world leader in shoes and sports apparel (Cortright, 2002).

There are many dimensions to distinctiveness, and because each community has its own special strengths and characteristics, no single measure or set of measures can capture this adequately. Effectively measuring a community's distinctiveness requires different measures for each city. Every city should look to recognize the ways in which their city is "First, best, or only" in some category (Waits \& Fulton, 2003). Recognizing this limitation, we've compiled a broad set of measures that begins to assess how much metropolitan areas differ from one another, and identify which urban areas differ most from U.S. averages in a series of key behaviors, including consumption, culture, food and Internet searches. These indicators signal the ways in which communities can begin to measure and validate their distinctiveness.

WEIRDNESS INDEX

Average of the extent to which the metropolitan area's ten most distinctive consumer behaviors exceed the national norm for each behavior, 2008

engage in a wide variety of pastimes and choose to spend their	1 San Josesesunvyle-Santalara, CA	9.1	26 Orlando-Kisisimee, FL	2.9
disposable income in a wide variety of ways. Some of these variations reflect	Francisoo-Oakland.FFemont CA	${ }^{7.3}$	frao-Niagarafuls, NY	2.8
	3 Saltake city UT	${ }_{6} 6$	28 Pochester, NY	2.8
	4 Denver-Aurora-Promfed, co	${ }^{6.1}$	29 Vivinina Beach-Norfolk-Newport	2.8
	5 Miami:Fort Lauderdale Pompano Beach, FL	${ }_{6} .0$	${ }^{30}$ Jacksonville, FL	2.7
rticul	${ }^{6}$ Sandiegoc-Carsbad-San Maroos, CA	6.0	31 Houston-SUugarLand-Baytown, TX	2.6
SRDS, a market research firm, publishes a summary of market research for	7 Los Angedes-IongBeach-Santana, CA	5.1	32 HartordW WetHarford.East Hartord, CT	2.5
the nation's principal metropolitan areas that includes data on 74 different be-	8 Riverside-San Bemardino-Ontari, CA	5.1	33 Milvauke Waukesa-Westallis, WI	4
haviors and activities from sports and fitness to hobbies and interests, appliance		5.0	34 Tampa-St. Petersburg. Clearwater. FL	2.4
ownership and various aspects of home life (SRDS/Equifax, 2008). Using this	10 Washington-Arington-Alexandria, DCVVA-MD-WV	4.9	35 Raleigh-Cary, ${ }^{\text {NC }}$	2.2
data for each metropolitan area, we identify the ten behaviors that differ most	11 Alanta-SandSSprins-Marietta GA	4.8	${ }_{36}$ Chicaso-Naperille.oJiet, [-1]	2.2
om the national average for those behaviors, and examine the extent to which	12 Seatle Traoma-Belever, WA	4.8	${ }_{37}$ Detroit-Waren-Livonia, MI	2.2
	13 Mimmendis.St. Paul-Blomington, MN-WI	4.6	${ }^{38}$ Charlote Casatonia-Conorord, NC.SC	2.1
all others. Places that differ most from the average have a high variance. Those	14 Sacramento-Arden-Arade-Roserille, CA	4.2	39 San Antoni, TX	2.1
most similar to the nation as a whole have alow variance.	15 Austin.Round Rock, TX	4.1	40 Lonisislle Jefferson County KY-IN	2.0
Consumption patterns varied most from the national average in San Jose,	16 PortlandVancower-Beaveron, OR-WA	4.1		2.0
San Francisco, Salt Lake City and Denver, where residents were more likely to	${ }_{17}$ Las Vegass Praraise, NV	3.8	42 Balimore Towson, MD	1.9
engage in a wide range of recreational and cultural activities that the typical met-	18 Dalass-ortWorth-Aringto, TX	3.7	43 Richmond VA	1.9
ropolitan resident. No large metropolitan area's consumption patterns exactly	19 New Orieans:Metairie-Kener LA	3.6	44 Philadelphia-Camden-Wilminton, PA-NJ-DE-MD	1.8
mirrored those of the nation as a whole-every metropolitan area has some pas-	20 PhoenixMeser-Soctssale, AZ	3.6	45 Pitssurgh, PA	1.6
metro areas are very close to the overall averase. Five metropolitan areas in two	21 Boston-Cambridge -ainey, MAA -NH	3.5	${ }^{46}$ Columbus OH	1.5
states, Ohio and Missouri, have consumption patterns that vary least from the	22 Nasarivile-Pavidson-Murfeestor-FFanklin, TN	3.2	47 Indiampolis Carmel,IN	1.4
U.S. average.	23 Okkhomacity OK	3.2	48 Cincimati-Middetown, OH-KY-IN	1.2
	${ }_{24}^{4}$ Birmingham-Hoveraf AL	${ }_{3.1}$	${ }_{49} \mathrm{Kanasas}$ City MO-KS $^{\text {d }}$	1.2
	25 Memphis TN-MS-AR	2.9	50 Cleveland-Elyria-Mentor, OH	1.0
			51 StIouis Mo-II	1.0

CULTURE/HDTV RATIO

Ratio of persons that reported attending a cultural event in the past year to the number of households with high definition televisions, 200%.

Individuals have substantial choice over the types of entertainment they enioy. Residents of every metropolitan area have wide access to mass entertainment, like television, as well as a broad range of cultural events. One aspect of community distinctiveness is the extent to which people participate in local cultural activities (which vary enormously from place to place) as opposed to the passive consumption of electronic media (which offer the same set of choices	1 San Francisoo-oakland.-Fremont, CA	129.8	26 Philadephia-Camden-Wiminingon PA-NJ-DE-MI	91.8
	2 SanJose-Sumyvale-Santalara, CA	129	27 Mimeapolis-StPaul-Bioministon, MN-WI	91.7
	3 Rochester, NY	124.0	${ }_{28}$ SanAntomi, T TX	91.3
	4 Miami:FortLuaderdelePompano Baah, FL	123.4	29 Virginiabeah-Vorfokk-NewportNews, VA-NC	90.0
		114.4	30 Columbus OH	9.5
everywhere). We measure the relative consumption of mass entertainment and local culture by computing the "culture/HDTV" ratio: the percentage of persons reporting attendance at local cultural events divided by the percentage of households that had a high definition television receiver. These data are drawn from SRDS marketing data (SRDS/Equifax, 2008). Overall, Americans are much more likely to report that they subscribe to cable television than attend cultural events, such as theatre, concerts and museums exhibits. The ratio of attendance to cultural events to cable subscriptions is highest in San Jose, San Francisco, Rochester and Miami. In each of these cities, about a third as many households have attended cultural events as subscribe to cable television. The metropolitan areas with the lowest patronage of cultural events relative to cable viewing are New Orleans, Las Vegas and Louisville. In these cities, the ratio of households attending cultural events to those subscribing to cable is less than one in four.	6 Denver-Aurora-Bromfeld, Co	110.8	31 Dallas-FortWorth-Arington, TX	89.4
	7 Saltake City UT	1093	32 Phonix.Mes-Soststade, AZ	88.8
	8 Portand-Vancouver-Baveroto, OR-WA	108.0	${ }_{3} 3$ Saxramento-Arden-Arade Posesille, CA	88.0
	9 Austin-Found Pook, TX	108.0	34 Jagsonnille.eL	86.0
	10 Hartiord-Wetthartord.EastHartord, CT	1073	35 Memphis, TN-MS-AR	84.6
	11 Seatte Traoma-Belereve, WA	106.0	${ }^{3} 6$ OkahomaCity, OK	83.8
	12 Boston-Cambride -uincy; MA-NH	1059	${ }^{37}$ Charlote-Castonia-Conocrt, MC.SC	83.7
	${ }_{13}$ Raleigh Cary, NC	105.9	${ }^{38}$ Kanasactir, MO-KS	82.2
	14 Buffilo-Niagara Fills, NY	105.2	39 Milwalke Waukeha-Wetstlis, WI	82.2
	15 San Diegeg-Carshad.San Maros, CA	101.4	40 Houston-Sugar Land-Baytown, TX	81.9
		101.1	41 Birmingham:HoveraL	81.3
	${ }_{17}$ Los Angeless-IongSeach Santa Ama CA	101.0	42 Indiamapolis-Carmel, IN	80.4
	18 Washington-Arington-Alexandriz,DCVVA-MD-WV	99.5	${ }_{43}$ StIouis, Mo-II	${ }_{78.9}$
	19 Atantas:SandySprinss.Marieta ${ }^{\text {CA }}$	98.4	44 Tampa-St Petersurs Clearvater FL	${ }_{78.5}$
	${ }^{20}$ Richmond, va	978	45 Riverside-San Bemardino-Ontari, CA	78.2
	21 DetroitWarren-Livoni, MI	97.1	46 Orlando-Kisisimmee,FL	${ }^{76.9}$
	22 Providenee New Bedorord-all River: Rr-MA	96.6	47 NashrillePaxidoon-Mufreesbor-F7anklin, TN	${ }^{76.4}$
	${ }_{23} 3^{\text {Pitusurgh PA }}$	96.1	48 Cincimati-Middetown, OH-KY-IN	${ }^{75.9}$
	24 Cleveland:Elyria-Mentor, OH	93.9	49 Las Vegasararaise, NV	${ }^{73.4}$
	25 Balitimore Towson, MD	93.9	50 Louisille -efeferson County,KY-IN	${ }_{72}{ }^{3}$
			51 Neworieans:Metairie-Kemers_LA	69.5

RESTAURANT VARIETY

Ratio of ethnic restaurants to fast food restaurants in the metropolitan area, 2009.

INTERNET SEARCH VARIETY

Variance of Google web-search patterns from national patterns for the most popular search terms, 2011.

Americans spend nearly half of their food budgets on meals outside the	1 NewYork.N.NewJeserev-Iongisand, MY-NJ.PA	2.05	26 Austin-Roundrock, TX	0.42
home. Metrooolitan areas offer a wide array of cuisines and restaurant choices.	2 Boston-Cambridge -aincy, MAA NH	1.65	${ }_{27}$ Phonix.Meses-Sotusade, AZ	0
The typical large metropolitan area has thousands of dining options from which to	miranciso-Oadand-Firemont CA	1.63	28 Bufita -Nigara Fills, NY	0.39
choose, ranging from fast food and quick-service restaurants to seated and more	4 Seatle-Traoma Bellewe, WA	1.49	29 Dalas FortWorth-Arington, TX	0.38
formal dining. Because there are low entry and exit costs and very high turnover in the restaurant business, and because local demand is critical, the composition of	5 LosAngeles-IongBeah-Santa An, CA	0.99	30 Riverside-San Bemardino-Ontario, CA	${ }^{0.37}$
the local restaurant industry is a good reflection of the demand oflocal customers.	6 San Jose-SumyvaleSanta Clara, CA	0.97	31 Detrot:Warren-Iionomi, Mi	${ }^{0.35}$
We measure the variety oflocal restaurants by computing the ratio of ethnic	7 San Diegoc-Carsbad-San Maroos, CA	0.95	32 Ricmmond va	0.34
restaurants to fast food restaurants in each of the nation's 51 largest metropoli-	8 Wastingtor-Arinetor-Alexandria, DC.VA-MD-WV		33 Houston-Sugaraland Baytomn TX	0.32
tan areas. Cities with the highest scores have the greatest variety of restaurants,	9 Philadelhhia Camden-Wilmington, PA-NJ-DE-MD	0.73	34 Mimeapolis:StPaul-Blominingon,MN-WI	0.32
and cities with low scores have less varietr. Our data are drawn from business	10 Portand-Vanoowere-Baveroto, OR-WA	0.72	${ }^{35}$ Nasarille-Paxidson-Muffeestor-FFranklin, TN	0.32
directories that list restaurants by format or cuisine. Restaurants self-select the	11 Chicago-Naperille Jodiet L-IN-WI	0.68	36 Virginiabeah-Norfolk-Newportiews VA-NC	0.31
categories in which they are listed	12 Las Vegasperaraise, NV	0.67	${ }_{37}$ San Antonio, TX	0.30
	13 Miami-FortLauderdale-Pompano Beach,FL	${ }^{0.65}$	${ }_{38}$ Charlote Castonia-Conorrt, NC-SC	29
cludes: Japanese, Thai, Vietnamese, Indian, French, Middle Eastern, Sushi,	Denver-Auroratiromfeld, co	6	${ }^{39}$ Pititsurugh PA	0.28
Greek, Spanish and Korean.	${ }_{15}$ Tampa-StPetersburs Clearwater FLI	0.56	40 Columbus OH	0.26
Most American metropolitan areas have more fast food restaurants than	16 Salt Take City UT	0.53	${ }_{41}$ Jacksonville, FL	0.24
ethnic restaurants (exeluding those serving Chinese, Italian and Mexican food).	${ }_{17} \mathrm{New}$ Orleans-Metairie-Kemer: IA	0.53	42 ClevenandElyria-Mertor; OH	0.24
Our highest-ranking city, New York, has more than twice as many ethnic restau-	18 Hartor-Westhartord-EastHartorr, CT	${ }^{0.53}$	43 Milivauke Waukesha-Westallis, wI	0.23
rants as fast food restaurants. Boston, Seattle and San Francisco	19 Pochester, NY	0.50	44 St Louis Mo-IL	0.21
		0.49	45 Kansas CityMo-ks	0.20
	${ }_{21}$ Sacramento-Arien-Arade -Poserille, CA	0.47	46 Okahoma City, OK	0.19
which have fewer than one diverse ethnic restaurant for every five fast food	22 Orando-Kisisimmee, FL	0.47	${ }_{4}^{47}$ Cindimati-Middetown, OH-KY-IN	18
restaurants.	23 Batimore Towson, MD	${ }^{0.44}$	48 Indiamapolis-Camel, IN	0.18
	24 Paleiegh-Cay, Cc	0.43	49 Louisille Jefeferson Conty,KY-IN	0.16
	25 Atanta-Sands Sprinse:Marieta, GA	0.42	50 Memphis TN-MS-AR	0.16
			51 Biminigham-Hovere, AL	${ }^{0.13}$

The Internet is almost ubiquitously available to residents of the nation's	Birmingham-Hoover,AL	1.78	26 Mimeapolis:StPaul-Blomminton,MN-WI	0.54
nd	2 Memphis, TN-MS-AR	1.71	${ }^{27}$ Austin-Round Rook, TX	0.52
different information on the web. In theory, everyone has access to	homacity, ok	1.62	s.Marieta, GA	0.51
le	4 Roonester, NY	1.59	29 Raleigh Cayy, NC	50
terests among metropolitan areas.	5 New Orieans-Metairic Kenmer:IA	1.46	30 Cincimati-Middeltown.OH-KY-IN	0.49
Each year, Google analyzes web searches as part of its Zeitgeist project	6 Las Vegas. Paradis, NV	1.45	31 HartordW Wettartord.EastHartord, CT	0.48
and identifies the "rising" search terms for that year. These are the searches that		1.44	32 Kansascity Mo-ks	.47
were unusual in prior years but grew extremely rapidly and became some of the	8 Bufflo-Nigagaraluls, NY	1.44	33 SanDiego-Carstad-SanNarosos, CA	47
most widely searched for terms during the past year (Google, 2012). For 2011,	9 Milvakee Waikesha-Westallis wi	1.44	34 Losangeles-songSeach-Santa Ana CA	0.46
rising search terms included "Rebecca Black," "Steve Jobs," "Ssama Bin Laden,"	10 Salttakeceity Ur	1.44	35 Riverside-SanBernardino-Ontari, CA	6
"iPhone5, " and "pinterest." We compute the degree of difference between each	11 Richmond, VA	1.43	${ }^{36}$ Boston-Cambride - Quincy MA - NH	0.45
local market and the national market by calculating the variance in the local pat-	Virginin Each-Noforik-NewportNews, VA-NC	1.42	${ }^{37}$ Cleverand-Elyra-Mentor, OH	0.44
large metropolitan areas for those search terms. (We excluded "Hurricane Irene,"	13 Jacksonville, FL	1.	${ }_{38}$ StLouis, Mo-IL	0.44
which produced an expected pattern of searches in affected areas). These data are	${ }^{14}$ Louissille Jefferson County KY-IN	1.41	enver-Aurorat	${ }^{0.43}$
drawn from Google's geographic analysis of web searches, which relies on geo-	15 Orlando-Kisisimmee, FL	1.07	${ }_{4} 0$ Priladeldhia-Camden-Wilmingon PA.NJ-DE-MD	43
graphic information about the Internet address of the requesting computer. We	16 San Frandisoo-adkand.FFemont, CA	0.81	41 Washington-Arinetor-Alexadria, DCVA-MD-WV	0.42
normalize values for individual metropolitan areas to control for population and	${ }_{17}$ San Jose-Sunnvalesanta Clara CA	0.81	42 Phoenix.Mesas.Soutsale, AZ	39
overall search volume differences between metropolitan areas. Metropolitan ar-	18 Dallas-FortWorth-Arington, TX	0.71	${ }_{43}$ Baltinore-Towson, MD	3
swhos	19 Tampa-StPetersburg Clearwater. FL	0.67	44 Houston-SSugar Land-Batown, TX	35
ies most from the national pattern have high variances	Nashruile-Pavidon-Muffeesbor-Franklin, TN	0.67	45 Seatte-Tacoma Palleve, WA	0.35
Birmingham, Memphis and Oklahoma City had search patterns for the	${ }^{21}$ Miami:Fort Landerrale Pompmano Beach,FL	${ }^{0.65}$	${ }^{46}$ Saramento-A-Arden-Arade Rosesill, CA	0.33
Google Zeitgeist firms that differed the most from the pattern of search for large	22 Portand-Vancowver:Beaveron, OR-WA	0.59	${ }^{47}$ Indiamapolis:Carmel, IN	${ }^{0.31}$
metropolitan area in the United States. At the other end of the spectrum,	${ }^{23}$ New York.N.New Jeseev-IongIsand. MY-N.P.PA	0.57	${ }_{48}$ San Antonio, TX	0.29
metropolitan areas most closely track overall preferences: Chicago, Detroit and	24 Columbus, OH	0.56	49 Pitsbursh, PA	0.27
Sacramento.	${ }^{25}$ Charlote Castonia-Conoord, MC.SC	0.55	${ }_{50}$ DetroitWaren-Livonia, MI	0.23
			51 Chicago-Naperille -Joiet L-TN-WI	0.21

WHAT DO I DO IF MY CITY RANKS LOW?

It has become fashionable to rate and rank cities as most livable or best for business or best for some activity or demographic group. High rankings are a source of celebration and marketing. Low rankings tend to be disputed or ignored.

What should I do if my city ranks low-or lower than I would likeon one of these measures?

First, its important to note that we have not made any attempt to add these various measures together to generate some overall rankin of vitality. Such combinations, in our opinion, are arbitrary and frequently obscure useful information rather than reveal insights. It is natural that some cities will rank high on some indicators and lower on others.

We present City Vitals as a diagnostic and a benchmarking tool cities can use to chart their current strengths and weaknesses and look for ways to improve their performance.

While we have included data for all of the U.S. metropolitan areas with a million or more population, we recognize there is a huge amount of variation in the size and characteristics among thes metropolitan areas. For many cities, it makes sense to compare or rank one's performance against a select group of peer region Cities ought to look for peers that have a similar size, that are
located in the same geographic region or have a similar economic base. Such focused comparisons are a better indication of relative performance and opportunities for change

A second lesson is that any city, regardless of its current ranking or circumstances, can generate real benefit from improving its performance in the four areas identified by City Vitals. In our City Dividends report, for example, we computed how much income a ypical metropolitan area could gain if it increased its overall fouryear college attainment rate by just one percentage point. The gains, even for the lower ranking cities, are measured in the hundreds of millions of dollars per year (Cortright, 2008)

As the fourth element of City Vitals makes clear, distinctiveness is a central part of urban success. Every city has its own unique challenges and opportunities. The art of urban economic strategy is developing a city's unique assets.

CORE VITALITY

The measures presented in this report all describe the overal performance of a metropolitan area. But the city is the center and focal point of a metropolitan are, and we know that urban form is ritical to a healthy, well-functioning metropolitan area. Vibran metropolitan areas heve strons centers that are hubs of economic, social and cultural activity. Strong urban cores attract and develo talent, make businesses more productive, foster creativity an ilont, make businesses more productive, foster creativity and vibrant urban neighborh will be critical to helping achieve key national objectives.

A vital urban core reinforces the success of a regional economy Cities with dense, economically diverse, close-in urban neighborhoods play key roles in assimilating immigrants, making transit work better, providing affordable housing, promoting economic opportunity, strengthening civic participation and reducing the emission of greenhouse gases. A weak or unattractive core is a liability to the entire metropolitan area.

Consider the key factor of education. The educational attainmen of the urban core plays a disproportionate role in determining the educational attainment of the metropolitan area. Richard Floridas elvis shows those metropoliton areas with the biggest education differentials in favor of the urban core have the highest overall leve of metropolitan educational attainment. Conversely, those area
with the weakest cores, relative to their suburbs, have the lowest evels of metropolitan educational attainment (Richard Florida 2010)

Further, our analysis of variations in urban travel patterns shows hat more compact metropolitan areas with better transit service nable their citizens to drive fewer miles each day, saving billions o dollars in fuel and automobile expense. Our City Dividends report hows how much each metropolitan area could gain by reducing travel by just one mile per person per day (Cortright, 2008) Despite the decline in real estate markets nationally, close-in urban neighborhoods have held more of their value, as we examined in Driven to the Brink (Cortright, 2008, April) and consumers place a higher value on walkable neighborhoods (Cortright, 2009).

In short, metropolitan areas are not formless blobs. Having a vital urban core is essential to the effective functioning of metropolitan areas. The geographic shape of a metropolitan conomy matters greatly to its success and efficiency A sprawling "ancake" metropolitan area imposes hioh costs on its citiven fr infrastructure and travel costs and produces greater economic for infastructure and" metrolit area- ine with a weak centeran't achieve the critical mass needed to drive economic suceess.

Core Vitality

To assess the vitality of the urban core in each of the nation's large metropolitan areas, we developed a series of three measures indicating the relative performance of the core in income, educational attainment and poverty. Municipal political boundaries are a poor choice for making comparisons across metropolitan areas because central cities vary substantially across metropolitan areas. Some central municipalities account for a majority of their metropolitan area's residents and include some areas that would be commonly thought of as suburban, while central municipalities are less than 20 percent of a region's population. Consequently, following an approach developed by Ed Glaeser, we define the urban core as the area within three miles of the center of the central business district (Glaeser, Kahn, \& Chu, 2001). For each of our indicators, we compute the absolute and relative level of central city performance. Absolute measures reflect per capita income, educational attainment and poverty in the urban core. Relative measures show how the core compares on each of these three indicators relative to the entire metropolitan area.

All of our data for estimating core vitality are taken from the American Community Survey's multi-year estimates for the period 2005-2009. These data are available at the Census Tract level, and we used Geographic Information System (GIS) software to estimate value inside the three-mile ring drawn around the center of the central business district of the most populous city in each metropolitan area. Because the data are drawn from surveys fielded over five years, they do not reflect the values for any particular year, but rather represent the average level of each value over the five-year period. As a result, they are not directly comparable to the 2010 one-year and 2008 to 2010 three-year estimates used in constructing other City Vitals indicators.

PER CAPITA INCOME

COLLEGE ATTAINMENT

Per capita income measures the average economic well being of a metro		72,953	26 MimimiFortuaderale-Pompano Beah, FL	22,141
area's residents. Per capita incomes in urban cores vary from less than \$14,000	2 Chicago-Naperville -Joiet L-IN-WI	59,785	27 Neworteans.Metairie-Kemer:LA	22,043
apita in San Antonio to more than \$72,000 in New York. In about two-thir	3 San Francisoo-Oadand.Fremont, CA	52,621	28 Cincimati-Middetown, OH-Kx-IN	21,793
of the large metropolitan areas, per capita incomes in the urban core are less than	4 Wastingon-Afingon-Alexandrai, DC.VA-MD-WV 5	50,61	29 Richmond VA	21,660
core area income about 24 percentlower than in the rest of the metropolitan area.	5 Seatle-Tacoma-Beleve, WA	45.843		21,554
al metropolitan areas have relatively high levels of per capita inco	6 PortlandVVancowerereavereton, OR-WA	${ }^{37,437}$	${ }^{31}$ Columbus, OH	21,263
core. The core of New York (centered on Manhattan) has average incomes more	7 Charotece Castoria-Concor, , NC.SC	37,409	32 Pitsourgh PA	21,262
than double those of the entire metropolitan area. Chicago's core has incomes	8 Boston-Cambridge-duiney, MA - NH	${ }^{37,383}$	33 Hartord.West Hartord.East Hartord, CT	20,938
nearly double those of the region. Fourteen other metropolitan areas-led by San	9 Atantasands Sprines-Marieta, GA	35,753	34 Virginia Beah-Norofol-Newport News VA-NC	20,787
Francisco, Seattle and Portland-have higher average incomes in the urban core	10 Denver-Aurora:Bromfed, co	35,672	35 Riverside-SanBermardino-Ontari, CA	20,231
than the rest of the metropolitan area. Los Angeles, Las Vegas and San Antonio	11 Houston-Susaraland.-Ratown TX	34,352	${ }_{36}$ Jacksonnile FL	19,389
	${ }^{12}$ SanDiegocararsad.San Maross, CA	32,948	${ }^{37}$ Nashrille-avidson-Murfreesbor-FFanklin, TN	19,219
	${ }^{13}$ Dallas-FortWorth-Arington TX	${ }_{31,997}$	${ }^{38}$ StLouis, MO-IL	18,956
	14 Oriando-Kisisimme, FL	2,995	39 Buffalo-Niagarafuls, ,	18,942
	${ }^{15}$ Sacramento-Arten-Aracale Poseerill, CA	29,907	40 Rochester, NY	18,241
		29,803	${ }_{41}$ Louisille Jefeferson County,KY-IN	17,947
	${ }_{17}$ AustinRound Rock, TX	28,531	42 Indiampolis-Carmel,IN	17,831
	${ }_{18}$ SanJose-SumyvaleSantalara, CA	28,329	43 Kansas City,Mo-ks	17,588
	19 Mimeapolis:St.Paul-Bloomington,MN-WI	24,622	44 Milwauke-Waukesha-Westallis WI	17,553
	20 Philadephia.Camden-Wilministon.PA.NJ-DE.MD	24,473	45 Detrot:Waren-Livonia, Mi	16,652
	21 Bimingham-Hovers. AL	23,769	46 Phoenix-Mesas-Sotstade, AZ	16,228
	22 Salt take City UT	23,348	${ }_{47}$ Las Vegasasaradis, , NV	15,761
	23 Batimore Towson, MD	22,312	48 Oklahoma City, O	15,626
	24 Memphis, TN-MS-AR	22,160	49 Cleveland.Elyria-Mentor, OH	15,540
	25 Raleieh-Cary, Mc	22.147	50 Los Angeless-ongSeach-Santa Ana CA	14,296
			51 SanAntomi, , TX	13,728

The four-year college attainment rate is our key measure of talent. This		65.2\%	26 Neworreans:Metairie-Kemer,LA	274\%
indicator counts the fraction of the adult population, aged 25 and older, that has completed at least a four-year college degree. There is wide variation in the rela-	2 Chicago-Naperille Jodiet, [T-N- WT	64.9\%	${ }^{27}$ Providene -New $\mathrm{Bedefort-Fall} \mathrm{River}, \mathrm{RL-MA}$	274\%
	3 Wastington-Atrington-Alexandria, DCVVA-MD-W	v61.5\%	28 Richmond, VA	\%
	4 Sanfrancisoo-Oadanad.Fremont, CA	577\%	29 Cincimati-Middetown, OH-Kx-IN	27.3\%
ed a four-year degree, compared to more than 65 percent of those living in New	5 PortlandVVancouver. Beaveroto, OR-WA	56.6\%	30 Memphis TN-MS-AR	\%
York's urban core. Although the median metropolitan area has a college attainment rate that is about two percentage points lower in the urban core than in the	6 Seatte-Tacoma.-alleve, WA	55.9\%	${ }_{31}$ Pitstoursh, PA	26.3\%
	7 Boston-Cambride.e.axines, MA-NH	50.5\%	32 Pochester, NY	25.9\%
overall metropolitan area, two-fifths of all metropolitan areas have higher educa-	8 Atanta-Sandysprinss.Marietta GA	50.4\%	${ }_{3} 3$ StLouis, Mo-II	25.7\%
tion attainment in close-in urban neighborhoods. Again, New York and Chicago	9 Austin-Roundrock, TX	48.6\%	34 Baltimore-Towson,MD	3\%
are the leaders (85 percent and 98 percent higher in the urban core, respectively).	10 Denver-Auroratiromfeld, Co	46.7\%	35 Miami Fortrauderdele.Pompanoseach, FL	24.3\%
attainment in the urban core than in the remainder of the region. Several cities have relatively very low levels of educational attainment in the urban core. Las Vegas and San Antonio have college eattainment rates in the urban core that are, on average, less than half those in the greater metro area.	11 Charotote-Castonia-Conorrat, NC-SC	40.9\%	36 Milwaukee Waukesha-Westallis WI	24.1\%
	12 Minmeapolis:StPaul-Blominigton, MN-WI	39.0\%		23.6\%
	${ }^{13}$ Houston-Sugar Land-Batoon, TX	384\%	38 Virginia Beah-Norfokk-Newoot News VAA-NC	22.4\%
	14 SanDiegoc-Carsbad.San Marosos CA	37.5\%	39 HartiordWestlartford.EastHarforr, CT	1.7\%
on average, less than half those in the greater metro area.	${ }_{15}$ Ralieigh-Cayy, NC	36.7\%	40 Detroit-Waren-Livonia, MI	21.3\%
	16 Saltrakecity UT	35.8\%	41 Riveside-San Bemardino-Ontari, CA	21.0\%
	${ }_{17}$ Staramento-Arden-Arade-Roserill, CA	344\%	42 Louisille Jefferson County,KY-IN	20.2\%
	18 Orlando-Kisimmee, FL	33.9\%	43 Kansas City Mo-ks	19.1\%
	19 Dallas-FortWorth-Arington, TX	33.2\%	44 Indiampolis Carmel,IN	18.3\%
	20 Tampa-StPetersurg. Clearwater FL	33.1\%	45 Cleveland:ElyraMenentor, OH	17.5\%
	21 Phildedephi-Camden-Wimminton,PA-NJ-DE-MD	32.2\%	46 Phoenix-Mesa-Soctsade, AZ	16.6\%
	${ }_{22}$ Columbus, OH	31.7\%	${ }_{47}$ Jagksonville, FL	\%
	23 Bimingham.Hoover, AL	29.6\%	48 Okkhoma City OK	15.2\%
	${ }^{24}$ Nasasvill -Daidson-Muffesboro-Franklin, TN	29.1\%	${ }_{49}$ LosAngeses_LongEeach-Santa Am, CA	15.2\%
	${ }_{25}$ SanJose-Sunnvele-Santaclara, CA	27.5\%	50 SanAntomi, TX	\%
			51 Las Vegeasararaise, NV	${ }^{8.8 \%}$

poverty rate measures the fraction of the population living in h	1 Cleveland-Elyria-Mentoro OH	42.4\%	26 Hattord-West artord.EastHartorct, CT	26.7\%
holds with annual incomes below the poverty line and indicates relative economic	2 Detroit-Warren-Livoni, MI	42.0\%	27 Miami-FortILauderdelePompano Beach,FL	26.7\%
distress. The poverty rate in urban core neighborhoods varies from less than 12	3 Memphis TN-MS-AR	37.\%\%	${ }_{28}$ Pitusbursh.PA	26.1\%
	4 Phoenix-Mesa-Soctssale, AZ	36.7\%	29 DallasFortWorth-Arington, TX	26.0\%
neighborhoods is higher than the metropolitan average. In the typical metropoli-	5 Columbus OH	35.\%	30 Raleigh-Cay, Mc	25.9\%
tan area, the poverty rate in the urban core is more than double the metropolitan	6 Milwauke Waukena-Westallis, WI	35.5\%	31 Virgminiaeah-Norfolk-NevportNews VA-MC	25.5\%
erage. Chicago, Portland and Sacramento have amons the least elevated rela-	7 Buffilo-Niagara Falls, , Y	35.\%\%	32 Las Vegas Paradise, NV	25.0\%
tive poverty levels in their urban cores with rates less than 50 percent higher than	8 Indiamapolis-Carmel,IN	34.0\%	33 Atanta-SandySprinss.Marieta, GA	24.9\%
for the metropolitan area. Cleveland and Minneapolis have core neighorrhood	9 Naskrille Pavideon-Muffeestor-Pranklin, TN	33.7\%	34 Houston-Sugar Land.Baytown, TX	24.5\%
poverty rates that are more than three times the average for their respective met-	10 Louisille Jefefrson Count, KY-IN	33.1\%	${ }^{5}$ Tampa-StPetersburs Clearwater FL	23.2\%
politan areas, although in the case of Minneapolis, this is by comparison to a	11 Losingeless-Iongeach-Santa Am, CA	33.0\%	36 Providene -New Bedtord-Fal River: R-MA	22.4
verty level that is the third owestin the natio	12 St. ouis Mo-II	32.9\%	${ }^{37}$ Charlote-Castonia-Conorord, NC-SC	22.0\%
	13 Olkahoma City OK	32.\%\%	38 Sattake City UT	20.2\%
	14 Kanasasty, MO-KS	31.8\%	39 Boston-Cambride- Quinç, MA-NH	19.9\%
	15 SanAntonio, TX	31.7\%	40 Devere-Auroraz-Bromfild, Co	19.8\%
	16 Birmingham:Hover, AL	30.7\%	${ }^{41}$ San Diego-Carsbad.San Narros, CA	19.3\%
	17 Rochester, NY	30.2\%	42 San Jose-Sumyvelesantalira, CA	177\%\%
	18 Cincimati-Midaletow, OH-Kk-IN	30.1\%	43 Riverside-SanBemardino-Ontari, CA	17.5\%
	19 Minmeapolis.StPaul-Blomington, MN-WI	29.8\%	44 Orlando Kisisimmee, FL	17.0\%
	${ }_{20}{ }^{\text {Jacksonvill, } \mathrm{FL}}$	29.1\%	${ }_{45}$ PortanadVancowver-Beaverto, OR-WA	16.9\%
	${ }^{21}$ Priladelehia-Camden-Wilminton PA-NJ.DE-MD	29.0\%	46 Chicago-Naperville.Joiet IT-N-WI	16.3\%
	22 New Orleans:Metairie-Kemer, [AA	28.0\%	${ }_{47}$ Sacramento-Arden-Aracae Posesille, CA	15.\%
	23 Austin-Round Pook, TX	28.0\%	48 Wastingtor-Aringto-Alexandia, DC.V.-.MD.wV	15.3\%
	24 Balimore Towson, MD	27.2\%	${ }_{40}$ Seatte TTacma-Belleve, WA	14.9\%
	25 Richmond, va	272\%	5o San Franciso-Oadand.-Fremont, CA	12.8\%
			New York.N.:NewJeserey-Iongisand, My-N	11.9\%

Metropolitan Performance

Ultimately, the four dimensions of success we have outlined in the City Vitals--connections, innovation, talent and your distinctivenessare reflected in the measurable performance of metropolitan economies. In CEOs for Cities work with urban leaders, there are several key indicators frequently used to assess metropolitan performance. For comparative purposes, we present data on five common performance measures: population, per capita income, poverty rates, vehicle miles traveled and greenhouse gas emissions.

POPULATION, 2010

PER CAPITA INCOME, 2010

city vitals examines the characteristics and performance of	1 NewYork.N.NewJemey-Longisand, NY-N.-PA	18,897,109	26 Orlando-Kisisimmee,FL	2,134,411
the nation's largest metropolitan areas, those with a population of one million or more. For reference, we've listed the 2010 population of each metropolitan area as reported by the 2010 Decennial Census. Several indicators use the population of the metropolitan area as the basis for normalizing data to enable easy comparisons. In 2010, 51 U.S. metropolitan areas had a population of one million or more.	2 LosAngelest.ongBearh-Santa Ana CA	12,82,837	27 Cincinati-Mideletown, OH: KY-IN	2,130,151
	3 Chicego-Naperille Joliet I-IN-WI	9,461,105	28 Clevenand-Eysia-Mentor, OH	2,077,240
	4 DallasFortWorth-Arington, TX	${ }_{6,371,773}$	$29 \mathrm{Kanasacity}, \mathrm{Mo-ks}$	2,035,334
	5 Philadedhai-Camden-Wilmington.PA-NJ-DE-MD	5,966,443	${ }^{30}$ Lasvegas Paradise, NV	1,951,269
	6 Houston-Sugar Land.-Batown, TX	5,946,800	${ }^{1}$ SanJoses Summyde-Santalara, CA	1,886,911
	7 Wastington-Atington-Alexandria, D.V.VA.MD.WV	5,582,170	${ }^{32}$ Columbus OH	1,886,586
	8 MiamiFort Tauderdale Pompano Beach, FL	5,56,635	${ }^{3} 3$ Charlote Castoriai-Conorord, NC-SC	1,758,038
	9 Alanta Sandysprins-Marieta, GA	5,268,860	34 Indiampolis-Camel, IN	1,756,241
	10 Boston-Cambrideo-Quiney, MA-NH	4,55,402	35 Austin-Roundrook, TX	1,716,289
	${ }_{11}$ Sanflancisoo-oadand.Fremont, CA	4,35, 391	36 Virginia Beach-NorofkekewportiNews VA-NC	1,671,683
	12 DetroitWarren-Iionia, MI	4,296,250		1,600,852
	${ }_{13}$ Rivesise-San Bemardino-Ontari, CA $^{\text {a }}$	4,22, 851		1,589,934
	14 Phoenix.Mesas:Sotssale, AZ	4,19, 887	39 Milwauke Waukesha-Westallis wi	1,555.908
	15 Seatte Traoma.-Blevene WA	3,43,809	${ }_{40}$ Jackeonnille. FL	1,345,596
	16 Minmeapolis:StPaul-Blomington, MN-WI	3,279,833	${ }^{41}$ Memphis TN-MS AR $^{\text {a }}$	1,316,100
	${ }_{17} \mathrm{San}$ Diegegorarshad.San Marosos CA	3,09, 313	42 Louisille Jefereson County KK-IN	1,283,566
	18 StIouis Mo-IL	2,812,896	43 Richmond VA	1,258,251
	19 Tampa StPetersburs Clearwaer.FL	2,78,243	44 Okahoma City, ok	1,252,987
	20 BaltimoreTowson, MD	2,710,489	45 Hartord-Westlartord-EastHartord, CT	1,212,381
	${ }^{21}$ Denver-Aurora-Bromfeld, Co	2,543,482	${ }_{46}$ Neworleas-Metatice:Kemer:LA	1,167764
	22 Pitisuurgh PA	2,356,885	47 Buffio - Niagaraflls, NY	1,135,509
	${ }^{23}$ Portland.Vancower-Beaveron, OR-WA	2,226,009	48 Raleigh Cayy, MC	1,130,490
	24 Sacramento-Arden-Arade Rosesille, CA	2,149127	49 Biminigham.Hoveras	1,128,047
	${ }_{25}$ San Antomi, TX	2,142,508	so Sattake city UT	1,124,197
			51 Rochesere, NY	1,054,323

Per capita income measures the average economic well-being of a metro	1 San Francisoo-oakland.Fremont, CA	61,388	26 PortandVancower-Beaverto, OR-WA	40,7
area's residents. Per capita income is computed by dividing a metro area's total	2 SanJoses Summvale Santa Cran, CA	58,947	27 Saramento-Arden-Arade Rosesille, CA	40,455
personal income (all income received by individuals) by the total population. Per	3 Wasaingon-Atirgton-Aleandria. DC.VA-MD-WV	57,959	28 Vivinini Baah-NofotikNewportsems VA-NC	40,362
	4 Boston-Cambride -uincy, MA-NH	55,677	29 Nashrille Daiden-Muffeesborofandin, TN	40,108
		54,407	${ }^{30}$ Jadsonnille, FL	39,947
In 2010, the average per capita income for the 51 largest U.S. metropoli-	6 Hartord.WestlartordEEastHartord, CT	51,315	31 Cincinati-Middetown, Of- KY-IN	39,721
s was approximately $\$ 33,000$. The highest level of per capita income	7 Seatte Traoma Belemene WA	51,190	32 Detotot-Waren-Livonia, MI	39,713
about $\$ 60,000$ in San Francisco. Other metropolitan areas with per capi-	8 Balimore Towson, MD	49,285	33 Alamat:SandSprings.Marieta, GA	39,998
ta incomes of greater than $\$ 50,000$ were Boston, San Jose, Seattle, New York,	9 Dever-Aurora Broomfeld, co	47,927	34 Pochester,NY	39,459
Hartford and Washington. Per capita incomes were lowest in Riverside, Orlando	10 Houston-Sugar Lend.Baytown TX	47,394	35 Indiampolis-Carmel,IN	39,418
and Las Vegas.	11 Phildedphia-Camden-WIImingon PA-NJ-DE-MD	47,192	36 Birmingham-Hoveral	39,400
		47,100	${ }^{37}$ Charolote-Castonia-Conorord, NC.SC	39,376
	${ }^{13}$ Sandiegocarisad.San Maroos, CA	46,334	${ }_{38}$ Raleigh-Cay NC	39,334
	14 Chicago-Maperville.odiet, T -IN-WI	46,021	39 Oklahomacity OK	39,288
	15 New Orieans-Metairie Kener [iA	44,944	${ }_{40}$ Austin-Round Pookt TX	39,001
	16 LosAngeles-IongBeach-Santana, CA	44,070	${ }_{41}$ Saltrake city UT	38,778
	${ }_{17} 7$ Pitsburgh, PA	43,729	42 Memphis, TN-MS-AR	38,457
	18 Milwalke Waikeha-Westalis, WI	43,555	43 Columbus OH	38,447
	19 Dalas Fort Worth-Arington, TX	43,554	44 Buffalo - Nigataraluls NY	38,249
	20 Miami FortLauderdale Pompano Baach, FL	43,539	${ }_{4} 5$ Louisisill Jefereson County, KY-IN	38,150
	21 Providene New Bediordi.all River. Pi.MA	${ }^{41,942}$	${ }^{46}$ Tampa-StPetesburs Claerwater FLI	37,940
	22 Kansas City Mo-ks	41,869	${ }_{47}$ SanAmtonio, TX	36,600
	${ }_{23} 3$ StIouis, MO.IIL	41,74	48 Phonis.Meses.Sotstade, AZ	36,445
	${ }^{24}$ Pichmond, VA	41,511	${ }_{49}$ Las Vegeas Praadies, NV	35,524
	25 ClevelandillyriaMentor:OH	40.849	50 Orlando-Kisisimee,FL	35,274
			51 Riverside-SanBemardino-Ontari, CA	29,76

POVERTY, 2010

VEHICLE MILES TRAVELED, 2008

The povery level is a useful, if imperfect, indicator of the extent to which	1 Memphis, TN-MS-AR	19.1\%	26 Dallas Fort Worth-Arington, TX	14.6\%
metropolitan areas provide for the least well off. Using data collected as part of	2 New Orieans:Metairie-Kemeri_IA	17.4\%	27 Charotete Castonia-Conoorl, MC.SC	14.5\%
-	3 Miami FortLauderde Peompano Beach, FL	17.1\%	28 Buffio-Nigagarafuls, NY	14.4\%
tion of the population of each metropolitan area that lives in households in which	4 Riverside-San Bemardino-Ontari, CA	17.1\%	29 Rochester, NY	1.2\%
	5 Birmingham-Hover, AL	17.0\%	30 Cincimati-Midedetom, OH-KY-IN	14.0\%
composition of each household. For 2010, the poverty threshold for a family of	6 DetoiotWarre-ILionia, MI	16.6\%	31 NewYorke.N.NewJesey-Longisand, NX-NJ.PA	13.8\%
four consisting of two adults and two children under 18 was $\$ 22,13$ per year.	7 Houston-Sugar Land Baytom, TX	16.5\%		13.7\%
The typical large metroopolitan area has a poverty rate of 14.6 percent. For	8 LosAngeses_Iongeach-Santana, CA	16.3\%		13.6\%
forty of the largest 51 metropolitan areas, the 2010 poverty rate was between 12.2	9 Phonix-Mesa-Soctsade, AZ	16.3\%	${ }^{34}$ PortlandVancowerereaveroto OR.WA	13.4\%
and 15.9 percent. Memphis had the highest poverty rate at 19 percent. Washington	10 San Antonio, TX	16.3\%	35 StIouis Mo-IL	13.3\%
had the nation's lowest poverty rate (8.4 percent) followed by Boston and Hartford,	11 Austin-Pound Rock, TX	15.9	${ }_{36}$ Salt takecity UT	\%
	12 okahomacity, OK	15.9\%	${ }_{37}$ Raleigh-Cayy, Cc	12.9\%
	${ }^{13}$ Columbus, OH	15.\%\%	38 Philadelihia Camden-WIImington PA-NJ-DE.MD	12.7\%
	14 Milwalke Waukeha-Westallis, WI	15.5\%	39 Denver-Aurorabioomfeld, C0	12.5\%
		15.4\%	40 Kanas city, Mo-ks	12.4\%
	${ }^{16}$ Tampa-StPetersburg.cleavater.FL	15.4\%	41 Pitusursh, PA	12.2\%
	${ }_{17} 7$ Jacksonville, FL	15.3\%	42 Sattle Traoma-Belene, WA	11.7\%
	18 Louisille Jefeferso County,KY-IN	15.3\%	43 Richmond, VA	11.6\%
	19 Cleveland:ElyriaMentor:OH	15.1\%	44 Balimore Towson,MD	11.0\%
	20 Las Vegasarataise, NV	15.1\%	45 Mimmapolis StPaul-Blomington,Mn-wI	10.9\%
	21 Sacramento-Arem-Arade -asesille, CA	15.1\%	46 San Franciso-Oadanad.Fremont, CA	10.9\%
	22 Altantasandy Sprinses.Marieta, GA	14.8\%	${ }_{47}$ Sanjose-Sumprval-Santalara, CA	10.6\%
	23 Indiampolis Carmelin	14.8\%	48 Virstiniaeah-NorfolkNewportNews VA-NC	10.6\%
	${ }^{24}$ SanDiegocararsod-San Maross, CA	14.8\%	49 Boston-Cambride-Quiney, MA - NH	10.3\%
	25 Orlando-Kisimme, FL	14.7\%	50 Hattor-West HartordeastHartord, CT	10.1\%
			51 Washington-Arington-Alexendria, DC.va-ND-WV	

GREENHOUSE GASES, 2008

A major global challenge going forward is working to minimize and reverse	1 Indiampolis Carmel, N	3.36	26 HartordW West liatord.EastHartord. CT	2.38
climate change. How we live in cities has a major impact on our carbon footprint. Along with differences in climate and regional variations in energy supplies, the density and settlement patterns of urban areas shape energy consumption and carbon emissions, chieffy through travel and home heating and cooling. Together, residential and commercial buildings and transportation account for nearly 70 percent of US greenhouse gas emissions (Sarzynski, Brown, \& Southworth, 2008).	2 Cindimati-Middetown,OH-KY-IN	3.28		${ }^{2.37}$
	3 Louisislle Jefferson County, KY-IN	3.23	${ }_{28}^{88}$ Detorot-Waren-Iivonia, MI	2.35
	4 Nashrille-Pavidon-Murfeesbor-PFandin, TTN	3.22	29 Vivirini Beach-Norofok-Newportinews VA-NC	34
	5 StLouis MO-II	3.22	30 Houston-Susaranand.Baytow, TX	2.29
	6 Okkhamacity OK	3.20	${ }_{31}$ Pitisburgh PA	2.28
	7 Wastinton-Arington-Alexandia, DC.VA.MD.WV	3.12	32 San Antonio, TX	2.27
Greenhouse gas emissions vary considerably across U.S. metropolitan areas. Denser cities, those with mild climates and those that rely less on coal for the generation of electricity have smaller carbon fotprints. A recent study prepared for the Brookings Institution estimates per capita carbon emissions from residential structures and personal transportation in each of the nation's 100 most populous metropolitan areas (Sarzynski, Brown, \& Southworth, 2008). Among the nation's largest metro areas, per capita carbon emissions are lowest in Los Angeles and Portland (less than 1.5 tons per person per year) and highest in a number of Midwestern cities (Cincinnati, Indianapolis, Louisville, Nashville, Oklahoma City and St. Louis), al of which average a tleast 3.2 tons of carbon emissions per person per year.	8 Richmond, VA	3.04	${ }_{3} 3$ Rivesise-San Bemaxdino-Ontari, CA	2.26
	9 Kanesactiy Mo-ks	2.97	34 Cleveland.Elyria- Mentor, OH	2.24
	10 Columbus, OH	2.95	35 Neworieans:Metairie Keneri_iA	2.16
	11 Jacksonville FLI	2.91	36 Miamiforthauderde Pompano Baeh, FL	2.16
	12 Bimingham-Hover,AL	2.90	${ }^{3} 7$ Prilideldhia-Camden-Wimmingon,PA-MJ-DE.MD	2.14
	${ }_{13}$ Memphis TN-MS-AR	2.87	38 Phonix.Mees:Soutsade,AZ	2.07
	14 Raleidh-Cay, Cl	2.80	39 Boston-Cambride -quincy MA-NH	2.02
	${ }^{15}$ Charolote Castonia-Conoror, , NC.SC	2.76	40 Las Vegas Paraise, NV	2.01
	16 Batimore Towson, MD	2.71	41 Buffilo Niagaraflls, NY	2.00
	${ }_{17} 7$ Alantasandy Sprinses.Marieta CA	2.88		1.97
	18 Dalas FortWorth-Axington, TX	2.58	${ }^{43}$ Rochester, NY	1.91
	19 Austin Round Rock, TX	2.57	${ }_{44}$ Sacramento-Arden-Arade Poserille, CA	1.77
	20 Orando -Kisisimmee, FL	2.55	${ }^{45}$ SanDiegocorarsbad-San Marosos CA	1.63
	21 Satt take city UT	2.52	46 San Franciso-oadland.Premont, CA	1.59
	22 Tampa-StPetersburg Clearwater:FL	2.50	${ }_{47}$ SanJoses Sunnyvalesantalary, CA	1.57
	${ }^{23}$ Mimmenolis St. Paul-Blomington, MN-WI	2.44	48 Seatte Traoma Belleve WA	1.56
	24 Milvauke Waukesha-Westallis wi	2.44		1.50
	25 Denver-Aurorabromfeld, co	2.39	50 PortandVancower-Beaveron, OR-WA	1.45
			51 Los Angeles-IongBeach-Santa Ana, CA	1.41

APPENDIX

The Connected City

For the reader＇s convenience，this appendix provides all of the data in each of our City Vitals indicators grouped according to each of the fou dimensions－talent，innovation，connections and distinctiveness－plus core vitality．Cities are listed alphabetically so the reader can easily identify data for individual cities．Ranks for each indicator are shown in parentheses．

Metropoutan area	voting	commury	$\underset{\substack{\text { Eeovomic } \\ \text { Witegarion }}}{ }$	transilu us	walkabury	Nitenational		cimitenet
Alanta－Sandy Sorins－Marieta，GA	582%＝	3.9% \％	712\％\％	978%	529 \％	157	182．	158 ．
Austin：Round Pook，TX	55．5\％\％	${ }^{299 \%}$	61．8\％\％	73% \％	$467{ }^{\text {m }}$	42.5 ．	192.	315 \％
Balimore Towson，MD	623% \％	314\％\％	70．9\％	186\％\％	639.	250	175.	$182 \times$
Birmingham－Hoove，AL	${ }^{625 \% \%}$	24.85%	644\％\％	38\％\％	4000	10.6	${ }^{103.8}$	147%
Bostor－Cambidee Quiney MA－NH	${ }^{617 \% \% 85}$	${ }^{272 \%} 820$	70．5\％m	195\％\％	792，	524.	20110	143.
Buffilo－Nigararalls， NY	${ }^{609 \% \%}$	25.3% \％s	T44\％${ }^{\text {\％}}$	${ }^{137 \%}$ ．11	601.	555.	114.4	
Charotete Castonial．Conord，NC－SC	${ }^{627 \%}$ ．0	28.80%	70．4\％\％	51\％\％	34.3 ．	${ }^{68.8}$	${ }^{137}$ m	223.
Chicaso－Napervile．Joiet IT－IN－WI	562% \％	${ }^{2338 \% 88}$	7．5\％\％	198\％	74.3 ．	${ }^{137 \%}$	180，${ }^{\text {a }}$	127．
Cincinnati－Middeteow，OH－KY－IN	6499%	2887%	761% ．	9．9\％${ }^{\text {a }}$	589.	12.1 ．	${ }^{1300}$	1690
Cleveland．EPyria－Mentor OH	${ }^{675 \% \%}$	282\％ 21	${ }^{680 \% \%}$	1116\％	58.3	123		
Columbus of	682% 。	279\％\％${ }^{\text {28 }}$	679\％\％	${ }^{59 \%}$ m	474.	300.	12.4.	188.8
Dallas－Fort Worth－Arington，TX	492\％\％	26.8780	58．9\％	44\％\％	469 \％	242 \％	16.58	
Denver－Aurora Bromfeld，，Co	${ }^{665 \%}$	299\％is	658\％\％	1048%	604.	${ }^{81.4}$	213.	256 。
Deterot－Waren－Livonia，MI	${ }^{657 \% \%}$	288%	${ }^{683 \%}$ \％	${ }^{6.5 \%}$ \％${ }^{\text {a }}$	499	${ }^{124.4}$	${ }^{1499}$	102，
Hartorot．West Hartord．East Hartoric，©T	${ }^{626 \% \%}$	24.15	774\％\％	117\％\％	${ }^{727}$	223.	175.5	22000
Houston－Sugar Land．Bartown，TX	4．9\％\％	${ }^{25.1 \%} 8{ }^{38}$	539\％\％	${ }^{57 \%}$ \％${ }^{\text {m }}$	498 \％	160%	${ }^{1777}$	122．
Indianapolis：Carmel，IN	613\％${ }^{\text {a }}$	${ }^{34.0 \% 5}$	6975	${ }^{288 \%}$	374.	85.	119.	${ }^{239}$
Jacksonville，FL	${ }^{684 \%}$ \％	25.2% so	793% 。	51% ，	${ }^{326.6}$	${ }^{27 \%}$	140%	179.
Kanasa City，Mo－ks	${ }^{681 \% \%}$	${ }^{2929 \%}$	${ }^{7338 \%}$	${ }^{4.85 \%}$	38.1 ．	56.6	${ }^{129.0}$	260%
Las Vegasaraadise，NV	482\％\％	${ }^{2226 \%} 88$	804\％\％	92\％\％	$492 \times$	${ }^{12.5 .5}$	187\％	226 ．
Los Angeless．ong beach－Santa An，CA	46.9% ．0．	${ }^{237 \%}$	${ }^{56.9 \%}$ ．${ }^{\text {a }}$	162\％．	659	${ }^{26770}$	${ }^{223,}$	119.
Lowisille Jefereson Count， CY	${ }^{639 \%}$	${ }^{251 \%} 98$				${ }^{6.6 \%}$		
	${ }^{6088 \%}$	${ }^{2648 \%} 83$	56．5\％\％em	${ }^{5.7 \% \%}$	${ }^{3994}$	${ }^{82,}$	111.	119.
	${ }^{524 \% \%}$	${ }^{207 \%}$	${ }^{651 \%}$ ．${ }^{\text {a }}$					
Milivakee Waukesa－Westalis WI	${ }_{\text {cke }}$			（190\％${ }^{1040}$	${ }_{6096} 60$	$\frac{1215}{156}$	${ }^{150} 18$	${ }_{248}^{238}$
Mimapapis．s．t．Pair－boominiton，MN－WI	${ }^{7} 6.48 \%$	${ }^{3756 \%}$ 2	${ }_{84.36,}$	${ }^{1145 \%}$	${ }^{693}$	${ }^{15656}$	${ }^{1688 .}$	${ }^{24.8 .80}$
	${ }^{590 \% \% 8080}$	${ }^{24.6840}$	${ }^{\text {719\％}}$ \％	${ }^{235 \%}$	${ }^{364 \%}$	${ }^{104.4}$	${ }^{117 \%}$	179.
New Orieans－Metarie：Kemerer LiA	${ }^{6448 \%}$	${ }^{22.888 .47}$	${ }^{6998 \%} 8$	${ }^{966 \%}$	${ }_{5668}$	${ }^{71.4}$	124．4．	${ }^{2325}$
Neew Yorke．N．Neve Jeresel－Iong Siand．NY－N．－PA	${ }^{507 \%}$ \％${ }^{\text {a }}$	${ }^{24.15 \% 808}$	${ }^{597 \%}$ ．	4518,	85.1	${ }^{261.1}$	${ }^{226}$ 。	98．0
Oklahma City，ok	560\％${ }^{\text {\％}}$	${ }^{252 \%} \% 8$	${ }^{688 \%}$	0．9\％\％	${ }^{366 .}$	${ }^{342,}$	$116{ }^{116}$	24.9 。
Oranado－Kisisimmee．FL	${ }^{595 \%}{ }^{\text {m }}$	${ }^{26.5 \% \% 93}$	${ }^{\text {773\％}}$ 。	${ }^{63 \% \%}$	${ }^{471.2}$	${ }^{165 \%}$	${ }^{1786}$	${ }^{24.6 .11}$
Philadelphia－Camden－Wilmington PA－NJ－DE－MD	${ }^{668 \% \%}$	${ }^{2886 \%} 8{ }^{20}$	655\％\％	193\％\％	${ }^{741} 9$	199%	174.	99.
Phonenix．Mesas．Sotstade，AZ	${ }^{486 \% \%}$	26.65%	656\％\％	${ }^{62 \%}$ \％	454．	131.1	167%	20.3 ．
Pittsurus PA	${ }^{636 \% \%}$	25.5%	${ }^{766 \% \%}$	${ }^{14.4 \% \text { 。 }}$	${ }^{641 .}$	22.5 ，	110．	152．
Portand VVancouver－Baereto，OR－WA	${ }^{639 \%}$ ．	352\％\％	810%	133\％	663.	120 \％	178	${ }^{342}$
Providenee－New Eediord．ral River，Pr－MA	572\％\％	220% so	${ }^{72.26 \%}$	67% m	${ }^{727}$	${ }^{244.4}$	${ }^{1668}$	${ }^{122.4}$
Raleiegh－Cary，NC	697% ．	${ }^{3088 \%}$	${ }^{7511 \% \%}$	${ }^{53 \% \%}$ \％	${ }^{414.4}$	${ }^{1868}$	${ }^{1499}$	28.3 。
Richmond，VA	${ }^{678 \% \%}$	${ }^{2727 \%} 8$	${ }^{74.4 \%}$	10．1\％	${ }^{511 \%}$	1208	${ }^{146 \%}$	182\％
Riverside－San Bemaratio．Ontario CA	${ }^{432 \%}$ s	24.688^{20}	691\％\％	45\％\％\％	${ }^{467 \%}$	60.	184.	82.
Pochesere，NY	${ }^{622 \% 85}$	${ }^{296 \%}$	776\％，	10．0\％\％	${ }_{631 .}$	283.	139%	166 ．
Saeramento－Arem－A－Araale－Rosesille，CA	${ }^{5667}$ x	${ }^{27228}$	${ }^{701 \%}$	${ }^{4.7 \% \%}$	${ }^{493.3}$	${ }^{52 \times 2}$	${ }^{187 \%}$	${ }_{240}^{240}$
St．Lous，Mo－ll	${ }^{687 \%}$	27.55^{25}	${ }^{74.2 \%_{6}}$	8.81% \％	${ }^{614.4}$	${ }^{138 \%}$	${ }^{131 \%}$	${ }^{159 \%}$
Sattale City UT	520\％${ }^{\text {a }}$	${ }^{4288 \%}$	${ }^{75.5 \%}$	${ }^{84 \%}$	${ }^{576 .}$	${ }^{190}{ }^{\text {an }}$	17718	${ }^{22.50}$
San Antomio，TX	${ }^{479 \% \%}$	301\％ 13	${ }^{60.8 \%}$ \％	${ }^{72 \%} \times$	408 ¢	90.4	${ }^{160 \%}$	${ }^{220.0}$
San Diego－Carsbad．San Marosos CA	551\％\％	277\％\％ 21	${ }^{6.58 \%}$ \％	${ }^{80 \% \%}$	${ }^{557 \%}$	${ }^{209.9}$	${ }^{239}$	${ }^{205.5}$
San Frandisoo－oalkand．Premont，CA	578\％\％	${ }^{325 \% \%}$	${ }^{64.5 \%}$ \％	188\％。	${ }^{849.9}$	374.	282	
San Joses．Sunvyle Santa Clara，CA	501\％${ }^{\text {a }}$	${ }^{358 \%} 3$	${ }^{696 \%}$ n	${ }^{755 \%}$ \％	54.5	480,	282,	
Seatle Tacoma Pelelene，WA	${ }^{622 \%} 8$.	317\％\％	${ }^{792 \%}$ 。	${ }^{128 \%}$	${ }^{737 \%}$	${ }_{266}$	20.8	
Tampa－St．Petersburs Clearwater，FI	${ }^{603 \% \%}$	${ }^{2226 \%}$	${ }^{757 \% \%}$	${ }^{47 \% \%}$ ．	5110^{517}	102.6	1668	159.
			${ }_{\text {cosem }}$	${ }^{\text {chem\％}}$		${ }_{\substack{1048 \\ 357 \%}}$		

The Innovative City

The Talented City

Metropoltan area	¢TIULIEEENT				INTEPNatoval
Atanta－Sandy Sprins：Marieta，GA	344% m	35% m	52\％．f	333\％	164\％${ }^{\text {m }}$
Austin－Pound Pook，TX	${ }^{399 \%}$	4．9\％	${ }^{67 \%}$	380\％。	${ }^{14.1 \%}$ \％${ }^{\text {a }}$
Balimore Towson，MD	${ }^{392 \%}$ ，	4．5\％	54\％${ }^{\text {\％}}$	${ }^{322 \%}$ \％	${ }^{144 \%}$
Biriningam－HooveraL	${ }^{324 \%}$ \％	29\％．m	${ }^{49 \% \%}$	312% \％	56\％\％
Boston－Cambidese－Quines，MA－NH	543\％；	51% \％	${ }^{73 \%} \%$	444% \％	${ }^{178 \% \%}$
Bufala－Nigarafalls，NY	${ }^{399 \%}$	33\％\％	${ }^{4.3 \% \%}$ s	${ }^{2662 \%}$	86% \％
Charotectesastoni－Conorrd，VC－SC	358\％n	34\％\％	54\％	298\％\％	11．5\％．
	401\％。	34% m	${ }^{58 \% \%}$	337%	${ }^{192 \%}$
Cineinnai：Middetewn，OH－KY－IN	${ }^{335 \% \% \%}$	4．0\％，	${ }^{4.35 \%}$	${ }^{297 \%}$ ．	75\％\％
Clevenand－EPYria－Mentor，OH	${ }^{329 \%}$ \％	35\％\％	${ }^{3.95 \%}$		
Columbs，OH	${ }^{380 \%}$ ，	35\％\％	${ }^{58 \% \%}$	331\％\％	10．0\％${ }^{\text {s }}$
Dalaserort Worth－Arington，TX	${ }^{30.5 \% \%}$	${ }^{33 \%}$ \％	${ }^{4.5 \% \% 8}$	${ }^{294 \%}$	16．9\％\％
${ }^{\text {D }}$ Denver－Auroras iromfada，Co		${ }_{\text {chem }}^{468 \%}$			${ }^{\text {97\％}}$
	\％	${ }^{505 \%}$	${ }^{366 \%}$	${ }^{26,5975080}$	边
Hartordewest hartorat－Basthartort，CT	399\％	${ }^{422 \%}$	${ }^{4.66_{2} 0^{3}}$	${ }^{334 \%}$	${ }^{140 \% \%}$
Indianaposis Cormel IN IN，		${ }^{4.50 \%}$	${ }_{\text {cosem }}$		${ }_{7}^{2489}$
Jaaksonvile ．FL	${ }^{269 \%}$ \％	32\％\％	3．5\％\％	24.4% \％	${ }^{123 \% \%}$
Kansas City Mo－ks	${ }^{366 \% \%}$	33\％\％	52\％\％	${ }^{323 \% \%}$	65\％\％
Las Vegasar Paraide，NV	20．\％\％	3.0% ，	32\％\％	18．5\％\％	25.5%
Losa Angeses．long Peach－Santa An，CA	${ }^{331 \%}$	37\％\％	${ }^{48 \% \% 8}$	${ }^{2977 \%}$	366% \％
Louisislle efefereson Count KK－IN	31．5\％\％	28\％．c	4．1\％\％	25．0\％\％${ }^{\text {a }}$	6．5\％\％
Memphis TN－MS－AR	${ }^{266 \%}$ ，	24% m	${ }^{36 \% \%}$	${ }^{236 \%}$	77\％${ }^{\text {a }}$
Miami．Fort Lauderdale：Pompano Beah，FL	277\％\％	27\％\％	37\％\％${ }^{\text {a }}$	${ }^{274 \% \%}$	
Miluautee Wautesha－Westallis ，WI	354\％${ }^{\text {a }}$	36\％\％	${ }^{47 \% \%}$	${ }^{2828 \%}$	${ }^{82 \%}$ \％
neapolis．st．Paul－Blomingston，MN－WI	${ }^{432 \%}$ 。	${ }^{4.0 \% \%}$	${ }^{6,229}$	${ }^{371 \% \%}$	${ }^{97 \% \% \%}$
Nasanvile－Davison－Murfeesboror－mankin，TN	333\％\％	${ }^{30 \% \%}$	51／20	${ }^{280 \%}$ on	75\％\％
Nevo Oreans：Metairie．Kemer，LA	${ }^{31.1 \% \%}$	${ }^{3.6 \% \%}$	${ }^{4.2 \% \%}$	${ }^{21.8 \%}$ \％	${ }^{81 \%}$
	444% \％	30\％\％	${ }^{6.36 \%}$ \％	${ }^{373 \% \%}$	${ }^{307 \% 95}$
Okahama City，ok	28．7\％\％	${ }^{33 \%}$	4．1\％\％	244\％\％	${ }^{81 \%}$
Orinado－Kisisimmee FL	299\％\％	37\％\％	40\％\％	${ }^{2588 \%}$	19．5\％
	302\％\％	${ }^{3.8 \%}$			138\％\％
Pitsoursh PA	40.5% \％	3．9\％${ }^{\text {a }}$	4.6% \％\％	${ }^{292 \%}$	6.88% \％
Portand Vancouver．Beaveron，OR．WA	${ }^{34.19 \%}$	46\％${ }^{0}$	52\％\％	317\％	12.8% \％
denee－Eev Fediord－Fal River Pr－MA	${ }^{338 \%}$	38% ．．	4．0\％\％	\％ 6	10．0\％${ }^{\text {m }}$
Raleigh－Cary，NC	425\％，	4.9% \％	6.6% 。	402% ．	${ }^{131 \% \text { \％}}$
Richmond，VA	${ }^{358 \% \% \%}$	33\％\％	${ }^{4.5 \% \%}$	${ }^{30.9 \%}$	88\％\％
Rivesidesesan Bemarano－ontaro，CA	1817\％	26\％\％	${ }^{248 \%}$	${ }^{154 \%}$	${ }^{2628 \%}$ \％
Rocheseser：NT	${ }^{37.35 \%}$	${ }^{400 \%}$	${ }^{4.49 \%}$	${ }^{298 \%}$	${ }^{8.96 \%}$
Saeramento－Arden－Arcaede－Rosesile，CA	${ }^{292 \%}$	44\％${ }^{\text {a }}$	${ }^{400 \% \%}$	${ }^{255 \%}$	${ }^{188 \%}$
St．Lous，Mo－It	${ }^{334 \% \%}$	36\％\％	${ }^{477085}$	28．9\％\％	7．5\％\％
Sattake Citr，UT	${ }^{2776 \%}$	35\％\％	50\％\％	${ }^{2545 \%}$	${ }^{10.65 \%}$
	${ }^{2577 \%}$	${ }^{288 \%}$	${ }^{3.5 \% \%}$	${ }^{220 \% \%}$	${ }^{125 \% \% \%}$
San Franiscoo．odaland．Premont，CA	482% \％	56% \％	73% \％	${ }^{40.8 \%}$ ．	31．8\％\％
San Joses－Sunvyle－Santa Clara CA	482\％。	${ }^{76 \%}$	${ }^{72 \%}$ \％	466\％，	${ }^{496 \%}$
Seatle－Tacoma－Eelevere，WA	${ }^{385 \%}$ ，${ }^{\text {a }}$	51\％。	5．9\％\％	${ }^{356 \%}$	20\％\％
Tampas．S．Peetersurs C．learrater FL	286\％\％	31\％，	34\％\％	${ }^{23.3 \% \%}$ ．	${ }^{15.5 \%}$ \％

Your Distinctive City

Core Vitality

Metropolitan Performance

population，		Poverry，		¢itenious
5．268．80，	$39,98{ }^{\text {an }}$	14．8\％\％	279.	268 ．${ }^{\text {c }}$
1771，289 m	39，01 ．	15．9\％，	${ }^{287}{ }^{\text {m }}$	2.57 ．
2．710，489 \％	49,385	11．\％\％。	23.95	271.
11.288 .947 ，	39，400 \％	177\％\％	350%	$2.30{ }^{2}$
4，552，4020	${ }_{55,6774}$	10．3\％\％	${ }^{225} 5$	202 。
1．33，509 ${ }^{\text {a }}$	38，299	144\％\％	202，${ }^{\text {a }}$	200 ，
17.758 .038 .8	${ }^{39,376}$	14．5\％\％	329.	276
9，461，105．	46,021 ．	136\％\％	191.	${ }^{1.97 \%}$
2，30，5151 ${ }^{\text {a }}$	39721 ．	14．0\％\％	233.	328.
2007240	40，849 \％	151\％${ }^{\text {a }}$	224.	224.
1．836，536	38447 ${ }^{\text {a }}$	157\％	${ }^{247}{ }^{\text {a }}$	295
6，371773．	${ }^{43,554}$ \＃	146\％\％	24.9 a	${ }^{2.58 .8}$
2.533882 2a	47927.	12．5\％\％	229.	239 m
${ }_{4}^{4,298,250 ~}$	${ }^{39773}$	166\％。	${ }^{256,}$ ，	${ }^{235 \%}$
1.2123881 .6	51.315.	101\％\％	251 m	2388
5.9468800	47394 io	16．5\％\％	33.3 ，	229\％
${ }^{1.756,2911}$	${ }^{39418}$ ．m	${ }^{14.85 \%}$	${ }^{2666.1}$	${ }^{3,36}$
1，345，596 \％	39，947 ${ }^{\text {m }}$	153\％\％	312 。	291 n
2.035334	41.869 n	12.47 \％	275.	2.97 ．
${ }^{1.951 .269 \%}$		151\％\％	${ }^{317 \%}$	2.01.
${ }^{12,2888837}{ }^{2}$	44070	${ }^{163 \% \%}$	${ }^{2210}$	${ }_{141}$
$1.283,5666^{6}$	38.5150 ．	15．3\％\％	${ }^{260}{ }^{\text {\％}}$	23．
	38457．	191\％	${ }_{220}^{249}$	${ }^{287 \%}$
${ }_{1}$ 1，55，5088．	${ }_{43,555}$	${ }^{155 \%}$	230	${ }_{24} 24$.
3729，83，¢	47.100 ロ	10．9\％\％	24.5 \％	244＊
1．589394 $=$	40.108 \％	154% \％	323.	322.
1，167784．4．	44,944 ！	174\％\％	${ }^{137 .}$	216 \％
${ }^{18,8971099}$	54,07 \％	${ }^{138 \%}$ \％	1600	1.50 ．
1，252，987 ．	${ }^{39} 2888$	${ }^{15.9 \%}$ ．．	33.9 \％	320 。
$2.1344111^{\text {\％}}$	35.724 ¢	147\％\％	309.	2.55.
	${ }_{47192}$ ．	127\％\％	20.0 \％	214%
${ }_{4}^{4,192887}$ ．	$36.455^{\text {a }}$	163\％。	${ }^{224.4}$	${ }^{207 \%}$
	${ }^{43729}$	12．2\％${ }^{\text {a }}$	217%	${ }^{228}{ }^{28}$
2，260009 ${ }^{\text {a }}$		134\％		145\％
$1.130,490$ os	3， 3 34	${ }^{12,9 \% \%}$	${ }_{353,}$	${ }_{280}{ }^{3}$
${ }_{1} 12588251.0$	41.511 \％	1116\％	${ }^{282}$	304
${ }_{4}^{4} 224,851$ ，	$29.76{ }^{\text {a }}$	171\％\％	218.	226 ．
1，554，323 ${ }^{\text {a }}$	39499 \％	142\％\％	21.9 \％	191．${ }^{\text {d }}$
${ }^{2} .1491278$	$40.45{ }^{\text {a }}$	151\％\％	184．	$177 .$.
12，396	41744 －	${ }^{133 \%}$ \％	${ }^{2977}$	${ }^{322}$ 。
1．124，197\％	38778 ．	131\％\％	222 \％	2.52 n
12，508＝	36600 ．	16．3\％。	252.	227 w
3．095313 m	46.384 ！	148\％\％	${ }^{226 \%}$	${ }^{1636}$
${ }_{4}^{4,355,391}$	${ }^{61,348}$	10．9\％\％	${ }^{213,8.8}$	1.59 ．${ }^{\text {c }}$
	¢	106\％ 110%	220．4．	${ }_{1}^{155 \%}$
3，243	${ }^{37} 7940$ a	154\％\％	270	2.50
${ }^{1.677 .683 \times}$	40.362 \％	10．6\％${ }^{\text {en }}$	2388	2348

The original version of this report, City Vitals, was published in 2006 (Cortright, 2006). This report incorporates changes in data and metropolitan area definitions from the original report are not directly comparable to the values presented in this report. This section provides a summary of these changes.

data Set

Much of the data for the original City Vitals report was drawn from Census 2000. Wherever possible, we have updated this data with newer estimates from the 2010 Decennial Census and the American Community Survey. To obtain the greatest tatistical reliability for key variables, we have used the three-year pooled data stimates for 2008-2010 developed by the Census Bureau.

geography

The geographical definitions that federal statistical agencies routinely use to describe metropolitan areas have changed since we first developed City Vitals. The
federal government now uses its "core based statistical area" (CBSA) definitions to dentify the boundaries of the nations metropolitan areas. For the most part, these metropolitan areas are similar to those used earlier.

However, there are important boundary changes. The previous metropolitan area ranking classified some adjacent metropolitan areas as "consolidated metropolitan statistical areas" CMSAs. The new classification now treats many of these former consolidated areas as separate metropolitan areas. For example, Boulder is now separate from Denver, Ann Arbor and Flint from Detroit, Salem from Portland and Raleigh from Durham. In each of these cases, the populations of the smaller etropolitan areas (Boulder, Ann Arbor, Flint, Salem and Durham) are no longe counted as part of a metropolitan area with 1 million or more population.

In three cases, metropolitan areas that were previously combined as part of a CMSA have been divided into separate CBSA metropolitan areas and have a population of San Francisco-Oarlond and Diver formor

In one case, two previously freestanding metropolitan areas have been combined and are now treated as a single metropolitan area. West Palm Beach, previously its own metropolitan area, is now combined with Miami-Fort Lauderdale.

Further, population changes have changed the roster of the nation's largest metropolitan areas. We use a metropolitan population of 1 million as our threshold for inclusion in City Vitals. In the first City Vitals, 50 metropolitan areas had at least this many residents. Based on 2007 population estimates, 51 metropolitan areas now exceed one million population. Birmingham, which had a population of under has been added to our lis.

Two metropolitan areas previously included in our sample no longer have population of one million in both cases due to the redefinition of metrooolitan boundaries. Grand Rapids--Muskegon--Holland, Michigan, and Greensborometropolitan areas in the new classification.

For some measures, data were only availabie for the older metropolitan area designations or for designated marke areas (DMAs), a set of geographic definitions used in media and marketing. In these cases, we have applied data from the most closely related MSA or DMA to estimate values for our 51 CBSA metropolitan areas.

Acs, Z. J., \& Audretsch, D. B. (1987). Innovation, Market Structure and Firn Size. Review of Economics and Statistics, 69(4), $567-574$.
Audit Bureau of Circulations. (2007 2008) Magazine Circulation Data (MSA CBSA, Spring 2007). Audit Bureau of Circulations
Sathelt, H., Malmberg, A., \& Maskell, P. (2002). Clusters and Knowledge: Local thelt, H, Malmberg, A, \& Maskell, P. (2002). Clusters and Knowledge: Local
Buzz, Global Pipelines and The Process of Knowledge Creation. DRUID. Bureau of Economic Analysis. (2011). Regional Economic Information System. Retrieved from http://www.bea.doo.gov/bea//regiona//reis/ca25/msa/ index.html
Sureau of the Census. (2011). American Community Survey. Retrieved from http://www.census.gov/acs/www/
Bureau of Transportation Statistics. (2009, October). Urbanized Areas 2008 Miles and Daily Vehicle-Miles Traveled. U.S. Department of Transportation. Retrieved from http://www.fhwa.dot.gov/ policyinformation/statistics/2008/hm71.cfm
ortright, J. (2002). The Economic Importance of Being Different: egions Returns and the Dynamics of Development. Economic Development Quarterly, 16(1), 3-16.
Cortright, J. (2005, December). The Young and Restless in a Knowledge Economy. CEOs for Cities.
ortright, J. (2008). City Dividends. CEOS for Cities.
Cortright, J. (2008, April). Driven to the Brink: How the gas price spike popped the housing bubble and devalued the suburbs. CEOs for Cities. Oortright, J. (2009, August). Walking the Walk: How Walkability Raises Home Values in U.S. Cities. CEOS for Cities.
Florida, R. (2002). The Rise of the Creative Class. New York: Basic Books. Florida, Richard. (2010, August 2). The U.S. Brainpower Map. The Atlantic Retrieved from http://wwww:theatlantic.com/business/archive/2010/08/
the-us-brainpower-map/60641/

Front Seat. Inc. (2011). Most Walkable Cities in the United States on Walk Score - New York, San Francisco, Boston, Chicago, Seattle, Washington D.C. City and Neighborhood Walkability Rankings. http://www.walkscor com/rankings/. Retrieved February 13, 2012, from http://www.walkscore. com/rankinss/
Retriexed Retrieved from http://www.hks.harvard.edu/e
Glaeser, E. L., Kahn, M., \& Chu, C. (2001, May). Job Sprawl: Employment Location in U.S. Metropolitan Areas. Brookings Institution. Retrieved from http://www.brook.edu/es/bwpua/99papers/bwpuas.pdf
Glaeser, E. L., Kerr, W. .R., \& Ponzetto, G. A. M. (2010). Clusters of entrepreneurship. Journal of Urban Economics, 67(1), 150-168. Google. (2012). Google Zeitgeist 2011. Retrieved February 13, 2012, from http:// www.googlezeitgeist.com/
Gottlieb, P. D., \& Fogarty, M. (2003). Educational Attainment and Metropolitan Growth. Economic Development Quarterly, 17(4), 325-336,
Uallachain, B. O. (2011). Does inventive intensity affect urban prosperity? Regional Science Po
$7802.2011 .01050: x$
Institute for Strategy and Competitiveness. (2012, February 13). Cluster Mapping Project Data
Institute of International Education. (2008, November 25). Open Doors Online Report on International Educational Exchange. Institute of International Education. Retrieved from http://opendoors.iienetwork.org/
Jacobs, J. (1961). The Death and LIfe of Great American Cities. New York. Random House.
acobs, J. (1969). The Economy of Cities. London: Penguin Books

REFERENCES ${ }_{\text {(continued) }}$

Jacobs, J. (2006, August 28). An Urban Visionary Speaks Out. Retrieved from
http://www.activeliving.org /index.php/Jane +Jacobs ++ +Full -Interview/32
of Knowledge Spillovers as Evidenceed by Patent Citations. Quarterly
Journal of Economics, 108(3), 577 .
Journal of Economics, 108 (3), 57 .
Landes, D. S. (1998). The Wealth and Poverty of Nations: Why some are so rich and some so poor. New York: W.W. Norton.
Lucas, R. E. (1988). On the Mechanics of Economic Development. Journal of Monetary Economics, 22, 3.
National Venture Capital Association, \& Pricewaterhousecoopers. (2012). The MoneyTree Report.
Porter, M. E. (1990). The Competitive Advantage of Nations. New York: Free Press.
Putnam, R. D. (2000). Bowling Alone: The Collapse and Revival of American Community. New York: Simon $\&$ Schuster.
Rampell, C. (2012, January 9). College-Educated Workers Gaining Jobs, High
School Grads Losing Them. New York Times (Economix Blog). Retrieved from http://economix.blogs.nytimes.com/20012/01/09/
workers-gaining-jobs-high-school-grads-losing-them
workers-gaining-jobss-high-school-grads-losing-them/
Reardon, S. F, \& Bischoff, K. (2011). Growth in the Residential Segregation of Families by Income, 1970-2009 (p. 33). Palo Alto, CA: Stanford University.
Ruggles, S., Alexander, T., Genadek, K., Goeken, R., Schroeder, M., \& Sobek, M. (2011). Integrated Public Use Microdata Series: Version 5.0. Retrieved from http://usa.ipums.ors/usa/
http:///usa.ipums.org/usa/
Sarzynki, A., Brown, M. A. \& \& Southworth, F. (2008, May 29). Shrinking the
Carbon Footprint of Metropolitan America. Brookings Institution. Carbon Footprint of Metropolitan America. Brookings Institution. Scarborough Research. (2011). Scarborough Research 2011 Release 2 USA A. All rights reserved

SRDS/Equifax. (2008).Lifestyle Market Analyst 2008. Des Plaines, IL. SRDS. Retrieved from http://www.srds.com/product_info/lifestyle/index.html Waits. M. J. \& Fulton W. W (2003) 2.0: Next Version (p. 52). Tempe, AZ: Morrison Insitute for Public Policy 2.:.Next Version (..52). Tempe, AZ: Morrison Insitute for Pubilic Policy,
Arizona State University. Retrieved from http://morrisoninstitute.asu.edu/ Arizona State University. Retrieved from http://morrisoninstitute.asu.edu/
publications-reports/WhichWayScottsdale_Sdale2pto-NextVersion/view Weissbourd, R. (2004, March 30). The Changing Dynamics of Urban America. CEOs for Cities.
Yahoo. (2009). Yahoo! Local. Retrieved from http://local.yahoo.com/

